Changes in Phosphorus Fractions and Its Availability Status in Relation to Long Term P Fertilization in Loess Plateau of China

Author:

Mahmood Mohsin,Tian Yi,Ma Qingxia,Ahmed WaqasORCID,Mehmood Sajid,Hui Xiaoli,Wang Zhaohui

Abstract

Excessive phosphorus (P) application can alter soil P availability and limit plant growth by compacting soil and fixation of P into different organic and inorganic forms. However, it remains uncertain whether these changes happen after limited fertilization or an excessive rate applied under the winter wheat cropping system. The current study aimed to identify the transformation of P into different organic (Po) and inorganic (Pi) fractions, and their role in the plant P uptake and winter wheat (Triticum aestivum L.) production. A long-term study (12 years) was conducted to assess the changes in soil Pi and Po fractions in response to different P rates (0, 50, 100, 150, and 200 kg P2O5 ha−1) applied to winter wheat. Phosphorus fractions were determined using the Hedley modified Tiessen and Moir fractionation scheme. Our findings demonstrated that different P rates significantly increased the available P, particularly NaHCO3-Pi, in the inorganic P fractions compared to P0 treatment. NaHCO3-Pi showed a strong relationship with grain yield (R2 = 0.91) and P uptake (R2 = 0.80). Grain yield was significantly higher in the P100 treatment, but no significant difference was observed between P100 and P200 treatments. The P200 treatment had a maximum grain P content and plant P uptake. Compared with the P0 treatment, all organic fractions yielded the highest Po with the P rate increase, ranging from 27.3 to 75.6 mg kg−1, 27.2 to 35.6 mg kg−1, and 58.8 to 124 mg kg−1 for NaHCO3-Po, NaOH-Po, and HCl-Po, respectively. Among all Pi fractions, the maximum fraction, known as apatite (HClD-Pi), was found in the P200 treatment with the range of 165 to 245.9 mg kg−1. HClD-Pi accounted for 32% of total P, which can be transformed into the available P form with the passage of time. An increase of 78% in residual P was found under the treatment of P200. The residual P fraction was positively correlated with grain yield, P uptake, and other inorganic fractions. It can be concluded that application of P increases P availability and grain yield with an increase in its application rate, but too much use of P can cause soil pollution and higher fixation of P. Consequently, a balanced application of fertilizer is recommended to reduce its fixation and increase its availability for higher crop yield.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference61 articles.

1. Sub-Saharan Africa’s food nitrogen and phosphorus footprints: A scenario analysis for 2050;Elrys;Sci. Total Environ.,2020

2. Effect of long-term fertilization pattern on weed community diversity in wheat field;Jiang;Sci. Rep.,2018

3. Efficiency of soil and fertilizer phosphorus use: Reconciling changing concepts of soil phosphorus behaviour with agronomic information;Syers;FAO Fertil. Plant Nutr. Bull.,2008

4. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle

5. Options for keeping the food system within environmental limits

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3