Affiliation:
1. National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, China
2. College of Forestry, Shandong Agricultural University, Tai’an 271018, China
Abstract
The irrational land use patterns in the Yellow River Delta (YRD) have resulted in an imbalance in ecological stoichiometry, leading to secondary salinization and soil degradation. However, there is limited knowledge about the long-term response of soil and enzyme stoichiometry to land use. This hampers our ability to optimize land use in the YRD to alleviate nutrient limitation and thus promote ecological stoichiometric balance. We investigated the stoichiometry of soil and enzyme carbon (C), nitrogen (N), and phosphorus (P) in three land use patterns (Alfalfa artificial grassland, AG; wheat–maize rotation field, WM; native grassland, PC) established for 19 years in the YRD. The results showed that the soil stoichiometry of the three land uses in the YRD was lower than the world and Chinese averages, indicating lower C and N levels. Nutrient limitations of soil microorganisms were C and P due to an enzyme C:N ratio greater than 1:1 and vector angle greater than 45°. The three land use patterns have different advantages in alleviating nutrient limitations in the YRD. AG promotes soil macroaggregate formation, reduces soil salt content, improves nutrient availability, and mitigates N limitation. This makes AG more conducive to improving the poor soil structure, high soil salinity, and stoichiometric imbalance in the YRD to mitigate local soil degradation and be suitable for long-term continuous cultivation. WM is beneficial for increasing soil total C content due to straw return. However, WM does not reduce soil salinity. WM is more suitable for intercropping or crop rotation to improve soil C content in the YRD. Although PC can alleviate soil microbial C limitation due to its significantly lower vector length than AG and WM, the low nutrient levels hindered its ability to alleviate local soil nutrient limitation. In conclusion, our study provides a theoretical basis for rational land use in the YRD to mitigate soil degradation.
Funder
Natural Science Foundation of Shandong Province, China
National Key Research and Development Project of China
Forestry Science and Technology Innovation Project of Shandong Province
Subject
Agronomy and Crop Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献