Abstract
The balance between fertilizer application and plant nutrient demand is essential for ensuring agricultural production because it is effective to prevent nutrient deficiency and excess, especially for soybean. This study used data from 29 sites of field experiments carried out in the soybean planting area of Liaoning province, China in 2011 to 2013. We (i) study the characteristics of yield, nutrient concentration, and harvest index to (ii) valuate the balanced nutrient uptake at different potential yield levels for soybean. The grain yield ranged from 804 to 4484 kg/ha, and average N, P, and K concentrations in grains were 45.7, 5.0, and 10.1 g/kg, respectively, while those in straw were 14.1, 1.8, and 6.7 g/kg, respectively. Average harvest index values of N, P, and K were 0.69, 0.65, and 0.52 kg/kg, respectively, while approximately 69% N and 65% P of the plant were stored in soybean grain, and 48% K was stored in straw. The two boundary lines of the QUEFTS (quantitative evaluation of the fertility of tropical soils) model were aN = 10.5, dN = 20.6, aP = 65.6, dP = 289.6, aK = 30.4, and dK = 162.7 as model parameters. The QUEFTS model estimated the balanced nutrient uptake with yield targets increased following a linear–parabolic–plateau curve. A continual linear increase in grain yield with 65.5 kg N, 7.0 kg P, and 13.9 kg K was required to produce 1000 kg grain, until the yield target reached approximately 60–70% of the potential yield, and the corresponding ratio of N, P, and K was 9.35:1:1.8. Results could be used to estimate balanced nutrient uptake to prevent excessive fertilizer being applied and reduce environment risk for ensuring sustainable agricultural development.
Funder
National Key Research and Development Program of China
Subject
Agronomy and Crop Science