Nitrogen Foliage Application at Anthesis Improves Grain Yield and Quality of Wheat in a Genotype-Dependent Manner

Author:

Gu Xiaoyan1,Yang Xiaofeng1,Jiang Ling1,Huang Shan1,Zhou Hong1,Zhu Jianyu1,Chen Yuanwei1,Li Yuze2,Liu Yang3

Affiliation:

1. Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China

2. Sichuan Engineering Research Center for Crop Strip Intercropping System, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China

3. College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China

Abstract

Crop quality tends to decrease with an increasing grain yield. Nitrogen is an important nutrient and moderate nitrogen foliage application (NFA) can significantly improve the wheat yield and quality. The objective of this study was to investigate the effect of NFA on the grain yield and quality of wheat and its genotype-dependent variation. Eighteen wheat cultivars were used, and two NFA levels (N1 and N2; 10.70 and 21.40 kg N ha−1 two day−1, respectively) were applied. Significant genotypic differences in the yield and quality were observed among the 18 varieties, and their responses to NFA differed. For nine varieties in the experiment, N1 increased the grain yield, but N2 did not. In contrast, high concentrations of NFA had no effect on the grain yield in the other nine varieties. The protein content and composition and trace element (Fe, Zn, etc.) are all nutrient elements that notably affect the wheat grain quality and yield. NFA significantly increased the grain prolamin and glutelin concentrations in the grains, thereby increasing the total protein concentration. The prolamin, glutelin, and total protein concentrations in the grains of the lower-protein cultivars were more sensitive to NFA than those of the higher-protein cultivars. In addition, NFA significantly decreased the amylose concentration in the grains. By affecting the prolamin, glutelin, and amylose concentrations in the grains, NFA significantly increased the development and stability times of the corresponding wheat flour dough, thereby improving the dough quality. Moreover, NFA reduced the molar ratio of phytic acid to Fe and Zn, increasing the bioavailability of trace elements. The judicious application of nitrogen fertilizer resulted in the synergistic improvement in the yield and quality.

Funder

Hunan Innovative Province Construction Project

Hunan Agricultural Science and Technology Innovation Project

Hunan Province Modern Agricultural Industrial Technology System Cultivation and Plant protection Post

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3