Changes in Photosynthetic Characteristics of Paeonia suffruticosa under High Temperature Stress

Author:

Ji Wen,Luo Haiyan,Song Yuqin,Hong Erman,Li Zhijun,Lin Bangyu,Fan Chenwei,Wang Huasen,Song Xinzhang,Jin Songheng,Chen Xia,Zhu XiangtaoORCID

Abstract

This study explored the changes in the photosynthetic characteristics of the Fengdan peony under high-temperature stress to provide a reference for understanding the tolerance of peony plants under heat stress. In this study, the effects of high-temperature stress (40 °C) on the photosynthetic characteristics of the Fengdan leaves were studied. At 25 °C, the net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (Tr) of the leaves decreased gradually with the increase in heat stress time, and intercellular CO2 concentration (Ci) decreased first and then increased. High-temperature stress reduced the light energy absorption (ABS/RC) and capture (TRO/RC), light energy for electron transport (ETO/RC), and heat dissipation (DIO/RC) per unit leaf area. The maximum photochemical efficiency (FV/FM), leaf photochemical performance index (PIabs), the probability that captured excitons can transfer electrons to other electron acceptors in the electron transport chain beyond QA (ψO), and the quantum yield for electron transport (φEo), decreased gradually. The results showed that high temperatures damaged the photosynthetic capacity of the peony leaves and destroyed the photosynthetic apparatus of leaves. This study provides a reference for understanding the photosynthetic characteristics and tolerance of peony plants under heat stress.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Zhejiang Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3