Effect of Composted Organic Waste on Miscanthus sinensis Andersson Yield, Morphological Characteristics and Chlorophyll Fluorescence and Content

Author:

Zając Mariola1ORCID,Skrajna Teresa1ORCID

Affiliation:

1. Faculty of Agricultural Sciences, University in Siedlce, 08-110 Siedlce, Poland

Abstract

The aim of this research was to determine the impact of composted mushroom substrate and composted municipal waste on the quality and yield of Miscanthus sinensis Andersson biomass. The plant was grown on anthropogenic soil, cultured earth type and hortisol subtype, with a pH of 6.81. Before planting rhizomes, experimental plots were treated with composted mushroom substrate and composted municipal waste, applied separately or in combination, each dose introducing 170 N kg·ha−1 to the soil. During the experiment, observations of plant development and growth were carried out, and the yield was determined. Each growing season’s measurements were taken of the grass height, the number and diameter of stems and the number of leaf blades and of nodes per stem. In order to determine the level of plant stress, relative chlorophyll content and chlorophyll fluorescence parameters were determined. The measurements were carried out in a non-invasive way, using the SPAD-502 chlorophyll meter and OS30p+ plant stress meter. For the research hypothesis, it was assumed that the one-time addition of composted mushroom substrate and composted municipal waste to the soil would increase yields. The experiment also aimed to assess the impact of both types of compost on the yield and morphological characteristics of Miscanthus sinensis. Its yields increased steadily, and, in the third year of cultivation, were higher by 52%. The highest average yields were noted on plots fertilized only with composted mushroom substrate (KPP100%), with 8.44 Mg·ha−1 DM, and with compost from municipal waste (KOM100%), with 7.91 Mg·ha−1 DM. The experience presents a solution to the problem of increasing amounts of organic waste and represents an improvement in cultivation techniques to increase crop yields, improve their quality and increase resistance to biotic and abiotic stress. This paper highlights the possibility of applying environmentally friendly organic waste materials to energy crops used as a sustainable energy source.

Funder

University of Siedlce

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3