Proteomic Analysis of Ginseng (Panax ginseng C. A. Meyer) Fluid Proteins under Salt Stress

Author:

Jung Ju-Young,Min Cheol WooORCID,Kim So Wun,Gupta RaviORCID,Jang Woojong,Bang Kyong-HwanORCID,Kim Yu-JinORCID,Jo Ick-HyunORCID,Kim Sun TaeORCID

Abstract

Ginseng (Panax ginseng C. A. Meyer), due to its relatively longer cultivation time, is often exposed to environmental stresses such as heat, salt, and drought. Particularly, salt-stress-derived oxidative damages greatly affect photosynthetic efficiency and consequently cause reduction of growth, development, and yield of ginseng. Thus, efforts have been made to understand the salt-stress-induced changes at proteome levels; however, the overall understanding of possible salt-responsive proteins in ginseng is still limited because of their low-abundance. A growing body of evidence suggests that plants secrete various low-abundant proteins localized in the intra- and extracellular spaces during stress conditions, and those proteins may have a key role for salt tolerance. Therefore, here, we report the ginseng fluids proteome to identify the potential salt-responsive proteins. This approach led to the identification of 261 secreted fluid proteins, and functional categorization revealed that identified proteins were majorly associated with photosynthesis, protein synthesis, cell binding, and various metabolisms. Further validation using qRT-PCR analysis showed similar expression profiles of heat-shock protein 70, glycosyl hydrolase 17, and fructose-bisphosphate aldolase class-I with proteome results. Overall, ginseng fluid proteomic analysis successfully identified the potential salt-responsive proteins, which might be helpful for understanding of salt-tolerance mechanisms in ginseng.

Funder

Rural Development Administration

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference82 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3