Improving Rice Yield by Promoting Pre-anathesis Growth in Subtropical Environments

Author:

Jiang Peng12,Zhou Xingbing1,Zhang Lin1,Liu Mao1,Xiong Hong1,Guo Xiaoyi1,Zhu Yongchuan1,Luo Juntao1,Chen Lin1,Liu Jie1,Xu Fuxian12

Affiliation:

1. Key Laboratory of Southwest Rice Biology and Genetic Breeding, Ministry of Agriculture, Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences, Deyang 618000, China

2. Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China

Abstract

Rice yield is greatly influenced by climatic factors and soil fertility in the location where it is grown, but information about the individual effects of climatic factors and soil fertility variables is difficult to distinguish because they are often not independent. The objective of this study was to demonstrate the effect of climatic factors on grain yield when soil fertility was not a confounding factor for explaining yield differences across two subtropical environments. Field and pot experiments with six rice cultivars were conducted in Deyang and Luzhou, Sichuan Province, China. We found that rice yield was higher in Deyang than in Luzhou by 7.0–16.8% for field experiments and by 57.6–87.4% for pot experiments. Biomass production rather than harvest index was responsible for the yield difference. Maximum and minimum temperatures and cumulative solar radiation (CSR) before heading (HD) were higher in Deyang than in Luzhou, whereas after HD, maximum and minimum temperatures were lower in Deyang than in Luzhou. Rice yield was more closely related to maximum and minimum temperatures and CSR before HD than to these parameters after HD. There was no difference in yield between soil types from Deyang and Luzhou within the same ecological condition. Thus, the yield difference between the two subtropical environments was mainly caused by the difference in climatic factors. The differences in biomass between Deyang and Luzhou were mostly due to variations in pre-heading crop growth rate (pre-CGR) and pre-heading radiation use efficiency (pre-RUE), which were induced by varying temperatures and CSR. We concluded that lower yield in Luzhou was associated with lower pre-CGR and pre-RUE. Our study suggests that developing rice cultivars with high pre-CGR and pre-RUE through a breeding program may also be a feasible approach to achieve high yield in subtropical environments.

Funder

National Natural Science Foundation of China

China Agriculture Research System

Foundation of Youth Science Program of Sichuan Agricultural Sciences Academy

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3