Three-Dimensional Point Cloud Reconstruction and Morphology Measurement Method for Greenhouse Plants Based on the Kinect Sensor Self-Calibration

Author:

Sun GuoxiangORCID,Wang Xiaochan

Abstract

Plant morphological data are an important basis for precision agriculture and plant phenomics. The three-dimensional (3D) geometric shape of plants is complex, and the 3D morphology of a plant changes relatively significantly during the full growth cycle. In order to make high-throughput measurements of the 3D morphological data of greenhouse plants, it is necessary to frequently adjust the relative position between the sensor and the plant. Therefore, it is necessary to frequently adjust the Kinect sensor position and consequently recalibrate the Kinect sensor during the full growth cycle of the plant, which significantly increases the tedium of the multiview 3D point cloud reconstruction process. A high-throughput 3D rapid greenhouse plant point cloud reconstruction method based on autonomous Kinect v2 sensor position calibration is proposed for 3D phenotyping greenhouse plants. Two red–green–blue–depth (RGB-D) images of the turntable surface are acquired by the Kinect v2 sensor. The central point and normal vector of the axis of rotation of the turntable are calculated automatically. The coordinate systems of RGB-D images captured at various view angles are unified based on the central point and normal vector of the axis of the turntable to achieve coarse registration. Then, the iterative closest point algorithm is used to perform multiview point cloud precise registration, thereby achieving rapid 3D point cloud reconstruction of the greenhouse plant. The greenhouse tomato plants were selected as measurement objects in this study. Research results show that the proposed 3D point cloud reconstruction method was highly accurate and stable in performance, and can be used to reconstruct 3D point clouds for high-throughput plant phenotyping analysis and to extract the morphological parameters of plants.

Funder

Natural Science Foundation of Jiangsu Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3