Microbial Nutrient Limitation of Different Tea Cultivars: Evidence from Five Representative Cultivars

Author:

Yuan Shijie123,Shen Chengwen12ORCID,Gao Kun3,Feng Shuzhen4,Li Dejun3,Hu Qiulong12,Liu Yu12,Luo Ze2

Affiliation:

1. Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China

2. College of Horticulture, Hunan Agricultural University, Changsha 410128, China

3. Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China

4. College of Science, Guangxi University of Science and Technology, Liuzhou 545006, China

Abstract

Soil microbial activity is generally limited by the availability of carbon (C), nitrogen (N), or phosphorus (P) in agricultural ecosystems. Soil ecoenzymatic activity (EEA), ecoenzymatic stoichiometry (EES), and vector characteristics were examined to assess microbial nutrient limitation. Investigating soil microbial nutrient limitation can provide insight into nutrient cycling in tea plantations with different tea cultivars. However, the dynamics of different tea cultivars on soil microbial nutrient limitations and their effect on tea quality remains poor. To address this issue, soil and plant samples were collected from a tea plantation cultivating five representative tea cultivars in Hunan Province, China. Baojing Huangjincha No. 1 (HJC1) and Huangjincha No. 2 (HJC2) were the extra early-sprouting cultivars, Zhuyeqi (ZYQ) and Zijuan (ZJ) were the middle-sprouting cultivars, and Zhenghedabai (ZHDB) was the late-sprouting cultivar, respectively. The results indicated that differences in EEA and EES were significant among five treatments. Notably, ZYQ and ZJ exhibited markedly lower activities of carbon (C), nitrogen (N), and phosphorus (P) acquiring enzymes compared to HJC1 and HJC2, whereas ZHDB showed significantly higher ecoenzymatic activities. Despite a general limitation in C and P for soil microorganisms across all cultivars (VL ranging from 1.42 to 1.59 and VA ranging from 58.70° to 62.66°), the degree of microbial nutrient limitation varied. Specifically, ZYQ experienced a pronounced P limitation (VA = 62.66°, N:P enzyme = 0.52), as evidenced by increased vector angles and decreased N:P enzyme values. Although C limitation was most pronounced in ZYQ (VL = 1.59), it did not significantly differ among the cultivars. These findings suggest that tea cultivars can influence the P limitation of microbial communities. Further analysis revealed that microbial nutrient limitations might adversely affect tea quality via impeding enzyme secretion. This study highlights the critical role of nutrient cycling within the soil-microorganism-plant ecosystem and emphasizes the influence of soil microbial nutrient limitations on tea quality within tea plantations. It is recommended that in the management of tea plantation fertilization, managers need to consider the influence of cultivars and develop specialized cultivar fertilizers.

Funder

National Natural Science Foundation of China

Major Science and Technology Innovation Projects in Hunan Province

General Project of Hunan Natural Science Foundation

Special Project for the Construction of Modern Agricultural Industrial Technology Systems in Hunan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3