Mitigation Potential and Yield-Scaled Global Warming Potential of Early-Season Drainage from a Rice Paddy in Tamil Nadu, India

Author:

Oo Aung Zaw,Sudo Shigeto,Inubushi Kazuyuki,Chellappan UmamageswariORCID,Yamamoto Akinori,Ono Keitsuke,Mano Masayoshi,Hayashida Sachiko,Koothan Vanitha,Osawa Takeshi,Terao Yukio,Palanisamy Jothimani,Palanisamy Elayakumar,Venkatachalam Ravi

Abstract

Water-intensive systems of rice cultivation are facing major challenges to increase rice grain yield under conditions of water scarcity while also reducing greenhouse gas (GHG) emissions. The adoption of effective irrigation strategies in the paddy rice system is one of the most promising options for mitigating GHG emissions while maintaining high crop yields. To evaluate the effect of different alternate wetting and drying (AWD) irrigation strategies on GHG emissions from paddy rice in dry and wet seasons, a field experiment was conducted at the Tamil Nadu Rice Research Institute (TRRI), Aduthurai, Tamil Nadu, India. Four irrigation treatments were included: One-AWD (one early drying period), Two-AWD (two early drying periods), Full-AWD (wetting and drying cycles throughout the rice season), and CF (continuous flooding). Different rice varieties were also tested in the experiment. In this study, we emphasized one factor (irrigation effect) that affects the dependent variable. The results show that early AWD treatments reduced methane (CH4) emissions by 35.7 to 51.5% in dry season and 18.5 to 20.1% in wet season, while full-AWD practice reduced CH4 emissions by 52.8 to 61.4% compared with CF. Full-AWD in dry season not only significantly reduced CH4 emission during that season, it also resulted in the decline of the early season emission in the succeeding wet season. Global warming potential (GWP) and yield-scaled GWP were reduced by early or full season AWD in both rice seasons. The GWP value from nitrous oxide (N2O) was relatively low compared to that from CH4 in both rice seasons. Rice yield was not affected by irrigation treatments although varietal differences in grain and straw yields were observed in both rice seasons. This study demonstrated that early season water managements are also effective in reducing CH4 and total GHG emissions without affecting rice yield.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3