A Comprehensive Approach to Assessing Yield Map Quality in Smart Agriculture: Void Detection and Spatial Error Mapping

Author:

Byabazaire John1ORCID,O’Hare Gregory M. P.12ORCID,Collier Rem1ORCID,Kulatunga Chamil1ORCID,Delaney Declan3ORCID

Affiliation:

1. School of Computer Science, University College Dublin, D04 V1W8 Dublin, Ireland

2. School of Computer Science and Statistics, Trinity College Dublin, D02 PN40 Dublin, Ireland

3. School of Electrical and Electronic Engineering, University College Dublin, D04 V1W8 Dublin, Ireland

Abstract

Smart agriculture relies on accurate yield maps as a crucial tool for decision-making. Many yield maps, however, suffer from spatial errors that can compromise the quality of their data, while several approaches have been proposed to address some of these errors, detecting voids or holes in the maps remains challenging. Additionally, the quality of yield datasets is typically evaluated based on root mean squared errors after interpolation. This evaluation method relies on weighbridge data, which can occasionally be inaccurate, impacting the quality of decisions made using the datasets. This paper introduces a novel algorithm designed to identify voids in yield maps. Furthermore, it maps three types of spatial errors (GPS errors, yield surges, and voids) to two standard data quality dimensions (accuracy and completeness). Doing so provides a quality score that can be utilized to assess the quality of yield datasets, eliminating the need for weighbridge data. The paper carries out three types of evaluations: (1) evaluating the algorithm’s efficacy by applying it to a dataset containing fields with and without voids; (2) assessing the benefits of integrating void detection and other spatial error identification techniques into the yield data processing chain; and (3) examining the correlation between root mean squared error and the proposed quality score before and after filtering out spatial errors. The results of the evaluations demonstrate that the proposed algorithm achieves a 100% sensitivity, 91% specificity, and 82% accuracy in identifying yield maps with voids. Additionally, there is a decrease in the root mean squared error when various spatial errors, including voids after applying the proposed data pre-processing chain. The inverse correlation observed between the root mean squared error and the proposed quality score (−0.577 and −0.793, before and after filtering spatial errors, respectively) indicates that the quality score can effectively assess the quality of yield datasets. This assessment enables seamless integration into real-time big data quality assessment solutions based on various data quality dimensions.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3