Effect of Surface Straw Incorporation Rate on Water–Salt Balance and Maize Yield in Soil Subject to Secondary Salinization with Brackish Water Irrigation

Author:

Lu Peirong,Zhang Zhanyu,Sheng ZhupingORCID,Huang Mingyi,Zhang Zemin

Abstract

Secondary salinization induced by brackish water irrigation has forced agricultural development to increasingly rely on soil management. A two-year field experiment was conducted to explore the effects of different straw incorporation rates (SIRs) within 0 to 20 cm topsoil on the soil water–salt balance, maize yield production, and water use efficiency (WUE) under brackish water irrigation in a naturally non-saline area. Air-dried wheat straw was applied at the rates of 0, 4.5, 9.0, 13.5, and 18.0 t ha−1 (R0–R4) and two salinity levels of irrigation water with the salt content of 1.92 dS m−1 (SL) and 3.20 dS m−1 (SH) were applied for simulating the scenarios of secondary salinization. Results demonstrated that straw incorporation markedly increased the soil water content during two growing seasons, and SIR was directly correlated to the deep percolation, but inversely correlated to the soil water depletion, under both the SL and SH condition. Meanwhile, straw incorporation led to the increase in salt content within the straw incorporation zone, but the total mass of salt deposited in the 0–100 cm soil profile was comparatively reduced as SIR increased due to the increased deep percolation for salt leaching, and such relative alleviation was more pronounced under the SH condition. The significantly increased maize yield and its corresponding WUE were obtained in treatments with high SIR levels. Additionally, an exponential function was used to describe the trend of the yield-increasing rate as SIR increased, and the theoretical maximum of grain and biomass yield calculated from the fitting results were 6483 in 17,282 kg ha−1 under SL, and 5440 and 14,501 kg ha−1 under SH, respectively. Results in this study would be helpful in the adoption of straw incorporation and brackish water irrigation in ways that facilitate soil water availability and reduce the risk of soil salinization.

Funder

Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3