Potential Nitrogen Mineralization and Its Availability in Response to Long-Term Fertilization in a Chinese Fluvo-Aquic Soil

Author:

Maitlo Ali AkbarORCID,Zhang Shuiqing,Ahmed WaqasORCID,Jangid Kamlesh,Ali SehrishORCID,Yang Hongbo,Bhatti Saleem Maseeh,Duan Yinghua,Xu Minggang

Abstract

The determination of organic nitrogen (N) mineralization is crucial for estimating N availability, quantifying exogenous inputs, and estimating associated environmental impacts. The objective of this study was to explore the effect of long-term various fertilization on soil organic N mineralization potential (NMP), which influences plant N accessibility. Treatments from a 26-year long-term field experiment with no fertilization (CK), chemical fertilizer N at 165 kg N ha−1 and P at 82.5 kg P2O5 ha−1 (NP), NP with K fertilizer at 165, 82.5, 82.5 kg ha−1 N, P2O5 and K2O (NPK), NPK at 165, 82.5, 82.5 kg ha−1 N, P2O5 and K2O with manure at 7857.14 kg ha−1 (NPKM), and NPKM at 165, 82.5, 82.5 kg ha−1 N, P2O5 and K2O with manure at 1.5× application rate (11,785.71 kg ha−1) (1.5NPKM) were examined for potentially mineralizable N by aerobic incubation at 35 °C for 30 weeks. Three pools (Pools I, II, and III) of mineralizable N were recognized. Pool I, the mineralization flush on rewetting in the first 2 weeks; Pool II, gross N mineralization between weeks 2 and 30; and Pool III, the potentially mineralizable N, predicted from the fitted curve, that did not mineralize during the incubation period. Soil microbial biomass carbon (SMBC) and N (SMBN) as well as fixed ammonium (NH4+) contents and relationship with N mineralization rate (k) were also studied. Long-term manure application yielded a significantly higher k (0.32 week−1) than other treatments (0.12–0.22 week−1) but not a significantly higher NMP. Nitrogen mineralization during the wheat and maize-growing seasons was predicted to be 8.7–26.3 (mg N kg−1 soil) and 25.9–42.1 (mg N kg−1 soil), respectively. Both labile mineralizable N pools (Pools I and II) followed the same patterns in the treatments: 1.5NPKM > NPKM > NPK > NP > CK, while the reverse was true for stable N (Pool III). The significant positive correlation between k with SMBC and SMBN (R2 = 0.93, p = 0.008 and R2 = 0.94, p = 0.006) suggested that the higher mineralization rate might be contributed by the higher soil microbial biomass in NPKM. The trends of fixed NH4+ and mineralized N were coupled. Long-term manure application significantly improved the N mineralization rate in soil. Manure application is an effective strategy to enhance soil microbial biomass and soil N availability and has the potential to reduce the dependence upon chemical N fertilization.

Funder

the National Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3