Selection of Appropriate Spatial Resolution for the Meteorological Data for Regional Winter Wheat Potential Productivity Simulation in China Based on WheatGrow Model

Author:

Zhang Xiaohu,Xu Hao,Jiang Li,Zhao Jianqing,Zuo Wenjun,Qiu Xiaolei,Tian Yongchao,Cao Weixing,Zhu YanORCID

Abstract

The crop model based on physiology and ecology has been widely applied to the simulation of regional potential productivity. By determining the appropriate spatial resolution of meteorological data required for model simulation for different regions, we can reduce the difficulty of acquiring model input data, thereby improving the regional computing efficiency of the model and increasing the model applications. In this study, we investigated the appropriate spatial resolution of meteorological data needed for the regional potential productivity simulation of the WheatGrow model by scale effect index and verify the feasibility of using the landform to obtain the appropriate spatial resolution of meteorological data required by the potential productivity simulation for the winter wheat region of China. The research results indicated that the spatial variation of landforms in the winter wheat region of China is significantly correlated to the spatial variation of multi-year meteorological data. Based on the scale effect index, we can obtain a spatial distribution of appropriate spatial resolution for the meteorological data required for the regional potential productivity simulation of the WheatGrow model for the winter wheat region of China. Moreover, although we can use the spatial heterogeneity of landforms to guide the selection of appropriate spatial resolution for the meteorological data, in the regions where the spatial heterogeneity of the landform is relatively weak or relatively strong over a small range, the method of using a single heterogeneity index derived from semi-variogram cannot well reflect the scale effect of simulation results and needs further improvement.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference66 articles.

1. Crop Evolution, Adaptation and Yield;Lloyd,1996

2. Climate adaptation imperatives: untapped global maize yield opportunities

3. Diversification, Yield and a New Agricultural Revolution: Problems and Prospects

4. Analysis of factors on impacting potential productivity of winter wheat in Huanghuaihai agricultural area over 30 years;Wang;Trans. Chin. Soc. Agric. Eng.,2010

5. Report on the Agro-Ecological Zones Project,1978

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3