Rhizosphere-Associated Microbiota Strengthen the Pathogenicity of Meloidogyne incognita on Arabidopsis thaliana

Author:

Zhou Xing-Kui1,Ma Li1,Yang Zi-Xiang2,Bao Ling-Feng2,Mo Ming-He1

Affiliation:

1. State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China

2. Institute of Tropical Eco-Agricultural Science, Yunnan Academy of Agricultural Sciences, Yuanmou 651300, China

Abstract

Microorganisms associated with nematodes or enriched in galls have been reported previously to aid plant-parasitic nematodes (PPNs) in infecting and establishing parasitism in the host plants. However, the rhizosphere-associated microbiota, which strengthens the pathogenicity of PPNs, remains largely unknown. This study illustrated rhizosphere bacteria enhancing Meloidogyne incognita infection on Arabidopsis thaliana by comparing the gall numbers of the treatments between natural soil and the sterile soil or soils drenched with antibiotics. By culture-dependent and pot testing methods, sixteen bacterial combinations from rhizosphere soils of A. thaliana were demonstrated to enhance M. incognita pathogenicity, including the most effective Nocardioides. Single-strain inoculation from the Nocardioides combination significantly resulted in M. incognita forming more galls on roots than the control, in which N. nematodiphilus R-N-C8 was the most effective strain. Strain R-N-C8 could substantially facilitate the M. incognita second-stage juveniles (J2s) moving towards the roots of A. thaliana and infecting the roots by releasing chemoattractant to attract J2s. The chemoattractant from strain R-N-C8 was determined to be L-lysine. This study furnishes vital insights for understanding the infection of root-knot nematodes associated with rhizosphere microbes.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Southwest United Graduate School of Yunnan Province

Special Funds for Central Guidance of Local Scientific and Technological Development

Department of Science and Technology of Yunnan Province

Yunnan University

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3