Improving Soil Moisture Assessment of Turfgrass Systems Utilizing Field Radiometry

Author:

Roberson Travis L.ORCID,Badzmierowski Mike J.ORCID,Stewart Ryan D.ORCID,Ervin Erik H.,Askew Shawn D.,McCall David S.ORCID

Abstract

The need for water conservation continues to increase as global freshwater resources dwindle. Turfgrass mangers are adapting to these concerns by implementing new tools to reduce water consumption. Time-domain reflectometer (TDR) soil moisture sensors can decrease water usage when scheduling irrigation, but nonuniformity across unsampled locations creates irrigation inefficiencies. Remote sensing data have been used to estimate soil moisture stress in turfgrass systems through the normalized difference vegetation index (NDVI). However, numerous stressors other than moisture constraints impact NDVI values. The water band index (WBI) is an alternative index that uses narrowband, near-infrared light reflectance to estimate moisture limitations within the plant canopy. The green-to-red ratio index (GRI) is a vegetation index that has been proposed as a cheaper alternative to WBI as it can be measured using digital values of visible light instead of relying on more costly hyperspectral reflectance measurements. A replicated 2 × 3 factorial experimental design was used to repeatedly measure turf canopy reflectance and soil moisture over time as soils dried. Pots of ‘007’ creeping bentgrass (CBG) and ‘Latitude 36’ hybrid bermudagrass (HBG) were grown on three soil textures: United States Golf Association (USGA) 90:10 sand, loam, and clay. Reflectance data were collected hourly between 07:00 and 19:00 using a hyperspectral radiometer and volumetric water content (VWC) data were collected continuously using an embedded soil moisture sensor from soil saturation until complete turf necrosis by drought stress. The WBI had the strongest relationship to VWC (r = 0.62) compared to GRI (r = 0.56) and NDVI (r = 0.47). The WBI and GRI identified significant moisture stress approximately 28 h earlier than NDVI (p = 0.0010). Those metrics also predicted moisture stress prior to fifty percent visual estimation of wilt (p = 0.0317), with lead times of 12 h (WBI) and 9 h (GRI). By contrast, NDVI provided 2 h of prediction time. Nonlinear regression analysis showed that WBI and GRI can be useful for predicting moisture stress of CBG and HBG grown on three different soil textures in a controlled environment.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference57 articles.

1. World Agriculture towards 2030/2050;Alexandros,2012

2. Golf Course Environmental Profile Measures Water Use, Source, Cost, Quality, Management and Conservation Strategies

3. Golf Course Environmental Profile,2014

4. Documenting Trends in Water Use and Conservation Practices on U.S. Golf Courses

5. Golf’s Use of Water,2012

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3