Soil and Plant Nitrogen Management Indices Related to Within-Field Spatial Variability

Author:

Łukowiak Remigiusz1ORCID,Barłóg Przemysław1ORCID,Ceglarek Jakub2ORCID

Affiliation:

1. Department of Agricultural Chemistry and Environmental Biogeochemistry, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland

2. Environmental Remote Sensing and Soil Science Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Krygowskiego 10, 61-680 Poznań, Poland

Abstract

Field zones at risk of low nitrogen use efficiency (NUE) can be identified by analyzing in-field spatial variability. This hypothesis was validated by analyzing soil mineral nitrogen (Nmin) and several plant and soil N management indices. The research was conducted in Karmin (central Poland) during two growing seasons, with winter oilseed rape (2018/2019) and winter wheat (2019/2020). The study showed that the crop yield was positively related to Nmin. However, this N trait did not explain all the observed differences in the spatial variation of crop yield and plant N accumulation. In addition, the soil N management indices were more spatially variable during the growing season than the plant N management indices. Particularly high variability was found for the indices characterizing the N surplus in the soil-plant system. The calculated N surplus (Nb = N fertilizer input − N seed output) ranged from −62.8 to 80.0 kg N ha−1 (coefficient of variation, CV = 181.2%) in the rape field and from −123.5 to 8.2 kg N ha−1 (CV = 60.2%) in the wheat field. The spatial distribution maps also confirm the high variability of the parameters characterizing the post-harvest N surplus, as well as the total N input (soil + fertilizer) to the field with rape. The results obtained indicate that a field N balance carried out in different field zones allows a more accurate identification of potential N losses from the soil-plant system.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3