Response of Winter Wheat (Triticum aestivum L.) Yield to the Increasing Weather Fluctuations in a Continental Region of Four-Season Climate

Author:

Huzsvai LászlóORCID,Zsembeli JózsefORCID,Kovács ElzaORCID,Juhász CsabaORCID

Abstract

Wheat is grown in the largest area in the world as well as in Hungary. Globally, the yield is predicted to decrease due to climate change; however, technological development can potentially compensate for it. In this study, the contribution of climatic and technological trends to the change in winter wheat yield in four sub-regions of Hungary with considerable spatial and temporal variations in weather conditions was evaluated. Long-term trends in both the weather conditions and the technology development, with the consideration of the socio-economic circumstances, were identified. For future yield prediction, non-climatic influences and critical climatic factors, as well as sensitivity in the phenological stages, were considered. In the past 50 years, the average yield variation was lower at regional than country scale. Winter wheat yield was not found to be sensitive to temperature, global degree days, precipitation, and climatic water balance, only to heat stress. Considering the technological development and the heat stress during the critical weeks in the last 30 years, an increase of yields can be expected by 2050 in Hungary’s western regions (0.72–1.55 t ha−1), while yield depression is predicted (0.27–0.75 t ha−1) in the eastern regions compared to the values estimated for 2019, ±1.5 t ha−1 within a 95% confidence interval. We proved that yield estimations can show contradictory changes by sub-regions of an agricultural region if the contribution of site-specific technology development, the dominant weather stressor, and the most sensitive phenological phase is involved in the statistical analyses. Identification of the dominant climatic stressor(s) for the different crops is necessary to keep high yield or even increase it under the changing environmental circumstances. Our findings suggest that heat stress is the main concern to maximize winter wheat production in temperate climate zones.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3