Long-Term Fertilization with Potassium Modifies Soil Biological Quality in K-Rich Soils

Author:

Chen Qiuyu,Xin Ying,Liu Zhanjun

Abstract

Imbalanced fertilization without potassium (K) is a worldwide phenomenon in K-rich soils, but its long-term effects on soil quality are poorly understood. Here, in a wheat–fallow system with K-rich soil, soil nutrients and enzyme activities involved in C, N, P, and S cycling and microbial community composition were studied in a 27-year field study with three treatments: no fertilizer (CK); mineral N and P fertilizer (NP); and mineral N, P, and K fertilizer (NPK). Results revealed that long-term NP and NPK fertilization significantly increased soil quality index (SQI) scores and wheat grain yield by mediating soil fertility, which was characterized by a significant decline in soil pH and increase in soil organic carbon (SOC), total N, available N (AN), available P (AP), enzymatic activities, and the abundance of total bacteria, fungi, and actinomycetes, when compared to CK. NP exhibited significantly higher SOC, AN, AP, microbial biomass C (MBC) and N (MBN), N-acetyl-glucosaminidase, total bacteria, and fungi values compared to NPK; the opposite was true for soil pH and available K. Notably, the differences in wheat grain yield were not statistically significant, while SQI scores in NP (0.86 ± 0.02) were appreciably higher than NPK (0.79 ± 0.03), which was attributed to the differences in MBC, MBN, and microbial communities. Redundancy analysis (RDA) indicated that SOC was the key variable affecting enzymatic activities and microbial community composition. The partial least squares path model (PLS-PM) revealed that fertilization-induced changes in SQI were primarily associated with soil microbiological properties (e.g., microbial community composition), while fertilization-driven increases in wheat grain yield were regulated by the soil nutrients. These results suggest that long-term NPK fertilization decreases soil biological quality in K-rich soils, and further studies are required to elucidate the underlying mechanisms by which K affects soil quality in agricultural systems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3