Low Temperature Effect on Different Varieties of Corchorus capsularis and Corchorus olitorius at Seedling Stage

Author:

Dey Susmita,Biswas AshokORCID,Huang Siqi,Li Defang,Liu LiangliangORCID,Deng YongORCID,Xiao Aiping,Birhanie Ziggiju Mesenbet,Zhang Jiangjiang,Li Jianjun,Gong Youcai

Abstract

To address the demand for natural fibers, developing new varieties that are resistant to abiotic stress is necessary. The present study was designed to investigate the physiological and biochemical traits of three varieties of C. capularis (Y49, Y38, and Y1) and four varieties C. olitorius (T8, W57, M33, M18) under low temperature to identify the cold-tolerant varieties and elucidate the mechanisms involved in enhancing cold tolerance. Research findings revealed that the varieties Y49 and M33 exhibited the highest chlorophyll and carotenoid content. Biochemical profiles revealed that varieties Y49 and M33 were found to be able to withstand low-temperature stress by accumulating different enzymatic and non-enzymatic antioxidants, such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APx), glutathione (GSH), and phenolics, which participated in reducing the content of malondialdehyde (MDA) and hydrogen peroxide (H2O2) caused by low temperature. Osmolytes compounds, such as total soluble sugar, significantly increased in Y49 and M33; and proline content decreased in all varieties except Y49 and M33 after low-temperature exposure. The rise in these osmolytes molecules can be a defense mechanism for the jute’s osmotic readjustment to reduce the oxidative damage induced by low temperature. Furthermore, PCA and hierarchical cluster analysis distinguished the seven varieties into three separate groups. Results confirmed that group I (Y49 and M33 varieties) were low-temperature tolerant, group II (M18, W57) were intermediate, whereas III groups (Y38, T8, and Y1) were low temperature susceptible. PCA also explained 88.36% of the variance of raw data and clearly distinguished three groups that are similar to the cluster heat map. The study thus confirmed the tolerance of selected varieties that might be an efficient adaptation strategy and utilized them for establishing breeding programs for cold tolerance.

Funder

Chinese Agriculture Technology Research System and Agricultural Science and Technology Innovation Program

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3