Contribution of Glutathione Transferases in the Selective and Light-Dependent Effect of Flumioxazin on Winter Wheat (Triticum aestivum L.) and Its Typical Weed Common Poppy (Papaver rhoeas L.)

Author:

Gallé Ágnes1,Farkas Máté1ORCID,Pelsőczi Alina12,Czékus Zalán1,Kukri András12,Dorner Zita3,Ördög Attila1,Csiszár Jolán1ORCID,Bela Krisztina1ORCID,Poór Péter1ORCID

Affiliation:

1. Department of Plant Biology, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary

2. Doctoral School of Biology, University of Szeged, H-6726 Szeged, Hungary

3. Department of Integrated Plant Protection, Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary

Abstract

Glutathione transferases (GSTs) are enzymes that catalyse modifications and conjugations of a range of organic and often cytotoxic compounds. GST enzymes with many functions—such as their conjugation activity against herbicides and their metabolites—can be induced and show light and circadian determination. The enzyme family, which is widespread in its function, also shows great diversity in its structure, which has been linked to its enzyme kinetic characteristics and physiological role at many points. In this study, we aimed to find out the role of different glutathione transferases in the herbicide responses to flumioxazin, as well as to determine how the antioxidant and detoxification response to herbicide treatment changes in the presence and absence of light. One of the herbicide treatments was carried out during the light period in the morning (9:00 a.m.), and the other before the end of the dark period (4:00 a.m.). The decrease in the maximal quantum efficiency of PS II and the reduction in the chlorophyll concentration supported the effect of the herbicide on Papaver rhoeas. In the guaiacol peroxidase POD and GST activity, there were large differences between the cultivated plants and the weed; both enzyme activities were much higher in the case of wheat. According to the activity of the antioxidant defence enzymes and GST gene expression data, the application of the photosynthesis inhibitor herbicide, flumioxazin, in the dark could allow the wheat antioxidant defence to switch on before the herbicide effect could appear in the light period. Phi and tau group GSTs were transcriptionally upregulated by the treatments in wheat plants (especially TaGSTU1B), while fewer changes were detectable in poppy weed (PrGSTU4). Based on our results, in the background of the greater and more successful response to flumioxazin may be—among other things—the higher degree of variability of the GSTU genes of wheat compared to poppies.

Funder

Hungarian Academy of Science’s grant for the support of researchers raising children

editorial board of the journal

National Research, Development and Innovation Office of Hungary—NKFIH

ÚNKP-23-3-I grant

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3