Early Detection of Broad-Leaved and Grass Weeds in Wide Row Crops Using Artificial Neural Networks and UAV Imagery

Author:

Torres-Sánchez JorgeORCID,Mesas-Carrascosa Francisco JavierORCID,Jiménez-Brenes Francisco M.ORCID,de Castro Ana I.ORCID,López-Granados Francisca

Abstract

Significant advances in weed mapping from unmanned aerial platforms have been achieved in recent years. The detection of weed location has made possible the generation of site specific weed treatments to reduce the use of herbicides according to weed cover maps. However, the characterization of weed infestations should not be limited to the location of weed stands, but should also be able to distinguish the types of weeds to allow the best possible choice of herbicide treatment to be applied. A first step in this direction should be the discrimination between broad-leaved (dicotyledonous) and grass (monocotyledonous) weeds. Considering the advances in weed detection based on images acquired by unmanned aerial vehicles, and the ability of neural networks to solve hard classification problems in remote sensing, these technologies have been merged in this study with the aim of exploring their potential for broadleaf and grass weed detection in wide-row herbaceous crops such as sunflower and cotton. Overall accuracies of around 80% were obtained in both crops, with user accuracy for broad-leaved and grass weeds around 75% and 65%, respectively. These results confirm the potential of the presented combination of technologies for improving the characterization of different weed infestations, which would allow the generation of timely and adequate herbicide treatment maps according to groups of weeds.

Funder

Ministerio de Ciencia e Innovación

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3