Double-DQN-Based Path-Tracking Control Algorithm for Orchard Traction Spraying Robot

Author:

Ren Zhigang,Liu ZhijieORCID,Yuan Minxin,Liu HengORCID,Wang Wang,Qin Jifeng,Yang FuzengORCID

Abstract

The precise path-tracking control of tractors and trailers is the key to realizing agricultural automation. In order to improve the path-tracking control accuracy and driving stability of orchard traction spraying robots, this study proposed a navigation path-tracking control algorithm based on Double Deep Q-Network (Double DQN). Drawing on the driver’s driving experience and referring to the principle of radar scanning and the principle of image recognition, a virtual radar model was constructed to generate a virtual radar map. The virtual radar map was used to describe the position relationship between the traction spraying robot and the planned path. Combined with the deep reinforcement learning method, all possible robot driving actions under the current virtual radar map were scored, and the best driving action was selected as the output of the network. In this study, a path-tracking algorithm was self-developed with a deep Q-network trained by driving the traction spraying robot in a simulated virtual environment. The algorithm was tested in both simulations and in a field to follow a typical ‘U’-shaped path. The simulation results showed that the proposed algorithm was able to achieve accurate path-tracking control of the spraying trailer. The field tests showed that when the vehicle speed was 0.36 m/s and 0.75 m/s, the maximum lateral deviation of the algorithm was 0.233 m and 0.266 m, the average lateral deviation was 0.071 m and 0.076 m, and the standard deviation was 0.051 m and 0.057 m, respectively. Compared with the algorithm based on the virtual radar model, the maximum lateral deviation was reduced by 56.37% and 51.54%, the average lateral deviation was reduced by 7.8% and 5.0%, and the standard deviation was reduced by 20.31% and 8.1%, respectively. The results showed that the Double-DQN-based navigation path-tracking control algorithm for the traction spraying robot in the orchard had higher path-tracking accuracy and driving stability, which could meet the actual operational requirements of traditional orchards.

Funder

the Major Science and Technology Project of Shaanxi Province of China

the National Key R&D Program of China “the 13th Five-Year Plan”

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference23 articles.

1. Current status and development strategies of mechanized orchard production in China;Zhao;J. China Agric. Univ.,2017

2. Advances in mechanization technology and equipment for orchards in hilly mountainous areas;Zheng;J. Agric. Mach.,2020

3. Research status and development suggestions on precision application technology and equipment in China;He;Smart Agric.,2020

4. Overview of orchard mechanization development in China Deciduous Fruit Trees;Lu;J. Deciduous Fruits,2018

5. Navigation sideslip estimation and adaptive control method for farm grader;Jing;J. Agric. Mach.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3