Mycorrhizal Effects on Active Components and Associated Gene Expressions in Leaves of Polygonum cuspidatum under P Stress

Author:

Deng Ci,Sun Rui-Ting,Ma Qiang,Yang Qing-He,Zhou Nong,Hashem Abeer,Al-Arjani Al-Bandari Fahad,Abd_Allah Elsayed FathiORCID,Wu Qiang-ShengORCID

Abstract

Arbuscular mycorrhizal fungi (AMF) participate in the process of plant secondary metabolism and thus affect the production of secondary metabolites. However, it is not clear whether and how AMF affect the growth and secondary metabolites of Polygonum cuspidatum, a medicinal plant rich in resveratrol and polygonin, under different phosphorus (P) levels. This study was performed to analyze the effects of Glomus mosseae on the growth, leaf gas exchange, P concentration, active ingredient concentrations, and expressions of associated genes of P. cuspidatum under P-deficient (0 mol/L P) and P-sufficient (0.2 mol/L P) conditions. The root mycorrhizal colonization rate of inoculated plants was 62.53–73.18%. G. mosseae improved shoot and root biomass as well as leaf P levels to some extent, but the improvement was more prominent under P-sufficient than P-deficient conditions. The fungal colonization also significantly increased leaf photosynthetic rate, stomatal conductance, transpiration rate, and intercellular CO2 concentration, which was more prominent under P-deficient rather than P-sufficient conditions. P addition promoted the concentration of active medicinal components in leaves, especially in uninoculated plants. G. mosseae distinctly raised leaf chrysophanol, emodin, polydatin, and resveratrol concentrations, which was more prominent under P-deficient conditions. However, physcion was raised by G. mosseae only under P-sufficient conditions. AMF and P addition up-regulated expressions of PcCRS1, along with the up-regulation of PcRS11 by P addition and PcRS11 and PcSTS by AMF under P-sufficient conditions. It is concluded that an adequate P fertilizer and AMF facilitate the production of active medicinal components in P. cuspidatum, associated with expressions of associated genes such as PcCRS1.

Funder

Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College

Science and Technology Research Projects of Chongqing Education Commission

2021 Undergraduate Innovation and Entrepreneurship Training Program of Yangtze University

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3