Effect of Banana Bunchy Top Virus on the Heat Shock Protein Genes of Pentalonia nigronervosa during Temperature Susceptibility and Its Effect on Virus Transmission

Author:

Chakraborty SwatiORCID,Barman MritunjoyORCID,Samanta SnigdhaORCID,Roy MoupiyaORCID,Tarafdar Jayanta

Abstract

Acquisition of plant viruses is known to exert various effects on vectors’ developmental biology. Pentalonia nigronervosa is the only known vector of banana bunchy top virus (BBTV), which is an economically detrimental virus infecting banana cultivars all over the world. In the present study, the developmental biology of viruliferous (Vr) and non-viruliferous (NVr) aphids was compared, with a marked reduction noted in the lifespan of aphids upon acquisition of BBTV. Among all the environmental parameters temperature is an important determinant of an insect’s abundance and geographical distribution. Temperature susceptibility of P. nigronervosa was scrutinized by comparing the mortality percentage and differential expression pattern of three heat shock proteins (Hsps; Hsp40, Hsp70, and Hsp90) at the mRNA level between NVr and Vr aphids. After exposure to different temperature stress (5 °C, 15 °C, 38 °C and 25 °C as control) highest mortality of Vr aphids were recorded at 5 °C. Analysis of expression levels of Hsp genes using qPCR showed that both cold and heat shock treatment stimulated higher expression of the three Hsps at various rates in Vr than NVr aphids.. Finally, the effect of temperature stress on the BBTV titer level and their transmission by P.nigronervosa was determined by absolute quantification. The transmission efficiency along with the virus titer was found to be the lowest at 15 °C compared to 38 °C. Overall, our results provide a novel insight into the intricate interaction between aphid fitness and thermal stress concerning the acquisition and transmission of BBTV, which could be a roadmap for the future epidemiological control system.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3