Determination of the Composition of Bio-Oils from the Pyrolysis of Orange Waste and Orange Pruning and Use of Biochars for the Removal of Sulphur from Waste Cooking Oils

Author:

Sánchez-Borrego Francisco-JoséORCID,García-Criado Noelia,García-Martín Juan F.ORCID,Álvarez-Mateos PalomaORCID

Abstract

Waste generated in the agri-food sector is a potential source of biomass and other products of high added value. In this work, the pyrolysis of orange waste and orange pruning was carried out to produce adsorbent biochars and characterise the bio-oils aiming for high-added-value compounds. Pyrolysis was carried out in a vertical tubular furnace on the laboratory scale modifying the temperature (400–600 °C), the heating ramp (5–20 °C·min−1) to reach the previous temperature and the inert gas flow rate (30–300 mL Ar·min−1) throughout the furnace. The most suitable conditions for obtaining biochar were found to be 400 °C, 5 °C·min−1, and 150 mL Ar·min−1 for orange waste, and 400 °C, 10 °C·min−1, and 150 mL Ar·min−1 for orange pruning. Thermogravimetric analysis showed higher thermal stability for orange pruning due to its higher lignin content (20% vs. 5% wt. on a wet basis). The bio-oil composition was determined by GC-MS. Toluene and 5-hydroxymethylfurfural were the main compounds found in orange waste bio-oils, while orange pruning bio-oils were composed mainly of 4-hydroxy-4-methyl-2-pentanone. Finally, the removal of the sulphur content from waste cooking oil was assayed with the biochars from both orange waste and orange pruning, whose BET surface areas were previously determined. Despite their low specific surface areas (≤1 m2·g−1 for orange waste biochars and up to 24.3 m2·g−1 for orange pruning biochars), these biochars achieved a reduction of the initial sulphur content of the waste cooking oil between 66.4% and 78.8%.

Funder

European Union

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference49 articles.

1. FAOSTAThttp://www.fao.org/faostat/es/#data/QC

2. Superficies y Producciones Anuales de Cultivos (2017)https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/superficies-producciones-anuales-cultivos/

3. Effect of ozone treatment on postharvest disease and quality of different citrus varieties at laboratory and at industrial facility

4. Biorefinery of agricultural residues by fractionation of their components through hydrothermal and organosolv processes;Rodríguez;Afinidad,2009

5. Ethanol production by Saccharomyces cerevisiae and Kluyveromyces marxianus in the presence of orange-peel oil

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3