Abstract
Optimizing crop rotations is one of the proposed sustainable management strategies for increasing carbon sequestration. The main aim of this study was to evaluate the DeNitrification-DeComposition (DNDC) model for estimating soil parameters (temperature, moisture and exchangeable NO3− and NH4+), crop yield and nitrous oxide (N2O) emissions for long-term multi-cropping systems in Hebei, China. The model was validated using five years of data of soil parameters, crop yields and N2O emissions. The DNDC model effectively simulated daily soil temperature, cumulative soil nitrogen and crop yields of all crops. It predicted the trends of observed daily N2O emissions and their cumulative values well but overestimated the magnitude of some peaks. However, the model underestimated daily water filled pore space, especially in dry seasons, and had difficulties in correctly estimating daily exchangeable NO3− and NH4+. Both observed and simulated cumulative N2O results showed that optimized and alternative cropping systems used less nitrogen fertiliser, increased grain yield and decreased N2O emissions compared to the conventional cropping system. Our study shows that although the DNDC model (v. 9.5) is not perfect in estimating daily N2O emissions for these long-term multi-cropping systems, it could still be an effective tool for predicting cumulative emissions.
Funder
National Natural Science Foundation of China
Hainan University Startup Fund
Subject
Agronomy and Crop Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献