Morphological Traits and Biomass Allocation of Leymus secalinus along Habitat Gradient in a Floodplain Wetland of the Heihe River, China

Author:

Wen Jun1,Li Qun2ORCID,Zhao Chengzhang13,Kang Manping1

Affiliation:

1. College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China

2. College of Resources and Environment, Xichang University, Xichang 615013, China

3. College of Geography and Environmental Science, Northwest Normal University, Research Center of Wetland Resources Protection and Industrial Development Engineering of Gansu Province, Lanzhou 730070, China

Abstract

Plant organ biomass allocation and morphological characteristics are important functional traits. The responses of plant root, stem, and leaf traits to heterogeneous habitats in floodplain wetlands are highly important for understanding the ecological adaptation strategies of riparian plants. However, the patterns of these responses remain unclear. In a floodplain wetland in the middle reaches of the Heihe River, we studied the responses of the root, stem, and leaf morphological traits and biomass allocation of Leymus secalinus to varying habitat conditions. We measured these traits in three sample plots, delineated based on distance from the riverbank: plot I (near the riparian zone, 50–150 m from the riverbank), plot II (middle riparian zone, 200–300 m from the riverbank), and plot III (far riparian zone, 350–450 m from the riverbank). The results showed that in plot I, L. secalinus tended to have slender roots and stems and small leaves, with a biomass allocation strategy that maximized the root–shoot ratio (RSR). In plot II, L. secalinus had thick stems and moderate leaf and root patterns, and the RSR values were between those of plot I and plot III. In plot III, L. secalinus had thin and short stems and large leaves; furthermore, among the root morphological structures, plot III had the shortest Rhizome length (RL) and longest Rhizome diameter (RD), and the RSR was the lowest. Moreover, there was a significant correlation between organ biomass and leaf thickness, stem length, RD, and RL in the three habitats (p < 0.05). By balancing the biomass allocation among organs, wetland plants in floodplains balance changes in root, stem, and leaf morphological characteristics to improve their environmental adaptation.

Funder

National natural science foundation of China

Xichang University Doctoral Start Foundation Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3