A SPH-YOLOv5x-Based Automatic System for Intra-Row Weed Control in Lettuce

Author:

Jiang Bo1,Zhang Jian-Lin1,Su Wen-Hao1ORCID,Hu Rui1ORCID

Affiliation:

1. College of Engineering, China Agricultural University, Haidian, Beijing 100083, China

Abstract

Weeds have a serious impact on lettuce cultivation. Weeding is an efficient way to increase lettuce yields. Due to the increasing costs of labor and the harm of herbicides to the environment, there is an increasing need to develop a mechanical weeding robot to remove weeds. Accurate weed recognition and crop localization are prerequisites for automatic weeding in precision agriculture. In this study, an intra-row weeding system is developed based on a vision system and open/close weeding knives. This vision system combines the improved you only look once v5 (YOLOv5) identification model and the lettuce–weed localization method. Compared with models including YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5n, and YOLOv5x, the optimized SPH-YOLOv5x model exhibited the best performance in identifying, with precision, recall, F1-score, and mean average precision (mAP) value of 95%, 93.32%, 94.1% and 96%, respectively. The proposed weed control system successfully removed the intra-row weeds with 80.25% accuracy at 3.28 km/h. This study demonstrates the robustness and efficacy of the automatic system for intra-row weed control in lettuce.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3