Phytochemical and Gene Network Analysis Elucidating the Key Genes Involved in the Biosynthesis of Gomisin J in Schisandra sphenanthera

Author:

Wu Bolin1,Peng Jiqing123ORCID,Fu Hanyu1,Shao Fengxia123,Sheng Song123,Wang Sen123

Affiliation:

1. College of Forestry, Central South University of Forestry & Technology, 498 South Shaoshan Road, Changsha 410004, China

2. Yuelushan Laboratory, Qiushi Building, Hunan Agricultural University, Furong District, Changsha 410128, China

3. The Belt and Road International Union Research Center for Tropical Arid Non-Wood Forest in Hunan Province, 498 South Shaoshan Road, Changsha 410004, China

Abstract

The biosynthesis and distribution of lignans in medicinal plants, particularly in Schisandra sphenanthera, hold significant pharmacological importance. This study bridges the knowledge gap in understanding the tissue-specific biosynthesis and distribution of these compounds, with a focus on Gomisin J. Our phytochemical analysis revealed a distinct accumulation pattern of Gomisin J, predominantly in the roots, contrasting with the distribution of Pregomisin and Dihydroguaiaretic acid. This finding highlights the roots’ unique role in lignan storage and biosynthesis. Further, differential gene expression analysis across various tissues illuminated the biosynthetic pathways and regulatory mechanisms of these lignans. Utilizing Weighted Gene Co-expression Network Analysis (WGCNA), we identified the MEtan module as a key player, strongly correlated with Gomisin J levels. This module’s in-depth examination revealed the crucial involvement of four cytochrome P450 (CYP) enzymes and eight transcription factors. Notably, the CYP genes DN6828 and DN2874-i3 exhibited up-regulation in roots across both male and female plants, while DN51746 was specifically up-regulated in male roots, indicating a potential gender-specific aspect in Gomisin J biosynthesis. Comparative analysis with functionally characterized CYP71A homologs suggests these CYP genes might be involved in distinct biosynthetic pathways, including terpenoids, alkaloids, and phenylpropanoids, and potentially in lignan biosynthesis. This hypothesis, supported by their more than 55% identity with CYP71As and strong correlation with Gomisin J concentration, opens avenues for novel discoveries in lignan biosynthesis, pending further functional characterization. Our research provides a comprehensive understanding of the genetic and metabolic mechanisms underlying the tissue-specific distribution of lignans in Schisandra sphenanthera, offering valuable insights for their pharmacological exploitation.

Funder

Key R&D Project of Hunan Province

Hunan Policy Project’s Science and Technology Aid to Xinjiang and Science and Technology Aid to Tibet

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3