Comparison of Gut Microbial Community between Bt-Resistant and Susceptible Strains of Ostrinia furnacalis

Author:

Xu Tingting1,Wang Yinhao12,Wang Yueqin3,Bi Sijia1,Hu Benjin1,Hu Fei1,Xu Lina1ORCID

Affiliation:

1. Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China

2. School of Life Science, Anhui Agriculture University, Hefei 230036, China

3. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Abstract

Bacillus thuringiensis is an effective entomopathogen, and its crystal toxin expressed in transgenic crops has been widely used for pest control. However, insect resistance risk is the main threat to the continued successful utility of Bt crops. Several studies reported the role of midgut microbiota in Bt resistance, but the mechanism remains controversial. In the present study, using high-throughput sequencing of the bacterial 16S ribosomal RNA gene, we surveyed the midgut bacterial flora of Ostrinia furnacalis from one Bt-susceptible (ACB-BtS) and two Bt-resistant (ACB-AbR and ACB-FR) strains and explored the mortality of O. furnacalis after eliminating the gut bacteria. Gut bacterial diversity in Bt-resistant strains was significantly lower in Bt-resistant than in Bt-susceptible strains. Ordination analyses and statistical tests showed that the bacterial community of ACB-AbR was distinguishable from ACB-BtS. The genus Halomonas was dominated in ACB-BtS, but the unclassified_Enterobacteriaceae was the most enriched genus in ACB-AbR and ACB-FR. Furthermore, interactions of the bacterial community are more complex in Bt-resistant strains than in Bt-susceptible strains. Moreover, the mortalities of ACB-AbR and ACB-BtS strains treated by the Cry1Ab toxin were significantly reduced after eliminating the gut bacteria. Our findings suggest that Bt stressors structured in the midgut bacterial community and the microbiota have the potential to regulate the Bt-induced killing mechanism.

Funder

Anhui Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3