Breeding Soft Durum Wheat through Introgression of the T5AL·5VS Translocated Chromosome

Author:

Li Wen1,Wei Yi1,Jin Yinyu1,Chen Heyu1,Kong Lingna1,Liu Xiaoxue1,Xing Liping12,Cao Aizhong12,Zhang Ruiqi12ORCID

Affiliation:

1. State Key Laboratory of Crop Genetics & Germplasm Enhancement and Application/JCIC-MCP, College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China

2. Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China

Abstract

The limited culinary utilizations of durum wheat (Triticum turgidum ssp. durum) are partly related to its very hard kernel texture, which is due to the softness genes Puroindoline a (Pina) and Puroindoline b (Pinb) on the Hardness (Ha) locus eliminated during allopolyploid formation. A previous study has reported that the softness genes Dina/Dinb, homologous to Pina/Pinb, were located on the chromosome arm 5VS of wild species Dasypyrum villosum. In the present study, we describe the process of transferring the soft grain texture from D. villosum into durum wheat through homoeologous recombination to develop a Robertsonian translocation. A durum wheat–D. villosum T5AL·5V#5S translocation line, S1286, was developed and characterized by molecular cytogenetic analysis from BC4F2 progeny of durum cv. ZY1286/D. villosum 01I140. The translocation line S1286 exhibited a soft grain texture as evidenced by observation through an electron microscope and a Single Kernel Characterization System (SKCS) hardness value of 5.5. Additionally, a newly developed 5VS/5AS co-dominant InDel marker, LW5VS-1, facilitated the transfer of the T5AL·5V#5S translocated chromosome into diverse durum wheat backgrounds. Subsequently, the T5AL·5V#5S translocated chromosome was transferred into five high-yielding durum wheat backgrounds by backcrossing and traced using marker LW5VS-1. Compared with each recurrent parent, T5AL·5V#5S lines showed good viability, similar development, and no yield penalty. Meanwhile, a significant decrease in plant height of about 6.0% was observed when comparing T5AL·5V#5S translocation lines with their recurrent parents. Accordingly, our results provide an efficient strategy for developing soft kernel durum wheat through the combination of T5AL·5V#5S translocation and the co-dominant marker LW5VS-1, which will be crucial for meeting the future challenges of sustainable agriculture and food security.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3