Alfalfa with Forage Crop Rotation Alleviates Continuous Alfalfa Obstacles through Regulating Soil Enzymes and Bacterial Community Structures

Author:

Xu Yanxia1,Liu Zhuxiu2,Shen Zhongbao3,Yang Zhao1,Fu Xuepeng4,Wang Xiaolong1,Li Shasha1,Chai Hua1,Wang Ruoding1,Liu Xiaobing2ORCID,Liu Junjie2

Affiliation:

1. Branch of Animal Husbandry and Veterinary, Heilongjiang Academy of Agricultural Sciences, Qiqihar 161005, China

2. State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China

3. Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China

4. Department of Life Science and Agroforestry, Qiqihar University, Qiqihar 161006, China

Abstract

Alfalfa is a perennial herbaceous forage legume that is significantly and adversely affected by monocropping. Crop rotation is the most effective measure to overcome continuous cropping obstacles. However, the mechanisms of how bacterial communities are affected and the potential links between these effects and cropping systems remain poorly understood. Based on a long-term field experiments with continuous alfalfa and forage crops with alfalfa rotation in the black soil region of the western Songnen Plain in Northeast China, the alterations in soil bacterial community structure using high-throughput sequencing of the 16S rRNA gene and soil chemical properties and enzyme activities were analyzed. The alfalfa–forage oats–silage maize–alfalfa and alfalfa–silage maize–forage oats–alfalfa system significantly increase the levels of total phosphorus and available phosphorus, and promote the activities of acid phosphatase, β-glucosidase, leucine aminopeptidase, and N-acetyl-β-glucosaminidase in comparison to continuous alfalfa. While alfalfa crop rotation did not affect the α-diversity of soil bacteria, it significantly altered the bacterial community composition and structure. Some key taxa are significantly enriched in the crop rotation system soils, including Bacillus, Sphingobium, Paenibacillus, Hydrogenispora, Rubrobacter, Haliangium, and Rubellimicrobium. Additionally, crop rotation with alfalfa increased the stability and complexity of the soil bacterial co-occurrence network. Based on our findings, we recommend promoting the alfalfa–forage oats–silage maize–alfalfa and alfalfa–silage maize–forage oats–alfalfa rotation systems as ideal practices for overcoming the challenges associated with continuous cropping of alfalfa. These systems not only enhance soil nutrient content and enzyme activities but also foster a beneficial microbial community, ultimately improving soil functionality and crop performance.

Funder

Outstanding Youth Fund of Heilongjiang Academy of Agricultural Sciences

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3