Exogenous DCPTA Increases the Tolerance of Maize Seedlings to PEG-Simulated Drought by Regulating Nitrogen Metabolism-Related Enzymes

Author:

Xie Tenglong,Gu WanrongORCID,Li Congfeng,Li JingORCID,Wei Shi

Abstract

2-(3,4-Dichlorophenoxy) triethylamine (DCPTA) regulates plant development; however, the molecular basis of this regulation is poorly understood. In this study, RNA sequencing (RNA-seq) analysis and physiological indexes of maize seedlings (three-leaf stage) treated with 15% polyethylene glycol (PEG) with/without DCPTA were investigated to explore the possible mechanism of exogenous DCPTA-improved drought tolerance. In the library pair comparisons of DCPTA vs. the control, PEG vs. the control, and PEG + DCPTA vs. PEG, totals of 19, 38 and 20 differentially expressed genes (DEGs) were classified as being involved in metabolic processes, respectively; totals of 5, 11, and 6 DEGs were enriched in the nitrogen (N) metabolic pathway, respectively. The genes encoding nicotinamide adenine dinucleotide-nitrate reductase (NADH-NR), ferredoxin-nitrite reductase (Fd-NiR), reduced ferredoxin- glutamate synthase (Fd-GOGAT), and chloroplastic glutamine synthetase (GS 2) were common in response to PEG-simulated drought stress with/without DCPTA treatment. Moreover, DCPTA maintained stable gene relative expression levels and protein abundances of NADH-NR, Fd-NiR, GS2, and Fd-GOGAT. Moreover, exogenous DCPTA partially mitigated PEG-simulated drought-induced reductions in the enzymatic activities of NR, nitrite reductase (NiR), glutamine synthase (GS), glutamine oxoglutarate aminotransferase (GOGAT), and transaminase, as well as in the contents of nitrate (NO3−), nitrite (NO2−) and soluble proteins and increases in the contents of ammonium (NH4+) and free amino acids. Together, our results indicate that exogenous DCPTA improved plant growth and drought tolerance by regulating N-mechanism enzymatic activities involved in transcription and enzymatic protein synthesis.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3