Deep Phenotyping of Yield-Related Traits in Wheat

Author:

Prey LukasORCID,Schmidhalter UrsORCID

Abstract

The complex formation of grain yield (GY) is related to multiple dry matter (DM) traits; however, due to their time-consuming determination, they are not readily accessible. In winter wheat (Triticum aestivum L.), both agronomic treatments and genotypic variation influence GY in interaction with the environment. Spectral proximal sensing is promising for high-throughput non-destructive phenotyping but was rarely evaluated systematically for dissecting yield-related variation in DM traits. Aiming at a temporal, spectral and organ-level optimization, 48 vegetation indices were evaluated in a high-yielding environment in 10 growth stages for the estimation of 31 previously compared traits related to GY formation—influenced by sowing time, fungicide, N fertilization, and cultivar. A quantitative index ranking was evaluated to assess the stage-independent index suitability. GY showed close linear relationships with spectral vegetation indices across and within agronomic treatments (R2 = 0.47–0.67 ***). Water band indices, followed by red edge-based indices, best used at milk or early dough ripeness, were better suited than the widely used normalized difference vegetation index (NDVI). Index rankings for many organ-level DM traits were comparable, but the relationships were often less close. Among yield components, grain number per spike (R2 = 0.24–0.34 ***) and spike density (R2 = 0.23–0.46 ***) were moderately estimated. GY was mainly estimated by detecting total DM rather than the harvest index. Across agronomic treatments and cultivars, seasonal index rankings were the most stable for GY and total DM, whereas traits related to DM allocation and translocation demanded specific index selection. The results suggest using indices with water bands, near infrared/red edge and visible light bands to increase the accuracy of in-season spectral phenotyping for GY, contributing organ-level traits, and yield components, respectively.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3