Comparative Assessment of Genetic Variability Realised in Doubled Haploids Induced from F1 and F2 Plants for Response to Fusarium Stalk Rot and Yield Traits in Maize (Zea mays L.)

Author:

Showkath Babu Budensab Mamtazbi,Lohithaswa Hirenallur ChandappaORCID,Triveni Gangadharaswamy,Mallikarjuna Mallana GowdraORCID,Mallikarjuna Nanjundappa,Balasundara Devanagondi C.,Anand Pandravada

Abstract

Doubled-haploid lines (DHs) are normally produced from F1 plants in maize (Zea mays L.). Several studies have found a low frequency of recombinants in doubled haploids produced from F1 plants that could limit the selection response. Hence, an attempt was made to produce doubled haploids from the F2 generation to verify whether one more round of meiotic recombination could lead to increased genetic variability and assess the response to selection. The F1 and F2 plants of two cross-combinations, VL1043 × CM212 and VL121096 × CM202, were subjected to doubled-haploid production and evaluated in terms of their reaction to Fusarium stalk rot and yield traits along with F2 individuals of the same two crosses. There was significant variation in the number of DHs produced when F1 and F2 plants were subjected to DH production in the cross VL121096 × CM202. Furthermore, substantial genetic variability was observed among the DHs produced from the F1 generation (DHF1s), F2 generation (DHF2s), and F2s for Fusarium stalk rot (FSR) resistance. The genetic variance was more extensive in DHF2 compared to DHF1 plants in the cross VL1043 × CM212. Extreme candidate plants (highly resistant, resistant, and highly susceptible) were found in the F2 generation with a more standardized range than in the DHs. In the DH populations, the close correspondence between the phenotypic coefficient of variability (PCV) and the genotypic coefficient of variability (GCV) indicated less influence from the environment compared to the F2 plants. The heritability estimates in the DHs were greater than in the F2 plants of the VL1043 × CM212 cross, while in the VL121096 × CM202 cross, the heritability was almost the same between the DHs and F2 plants due to the relatively small population size of the DHs. The positively skewed leptokurtic distribution of the DH populations indicated the role of fewer genes, with the majority of them exhibiting complementary epistasis with decreasing effects in response to FSR. The mean estimated yield and genotypic variance in the top crosses produced from randomly chosen DHF1 and DHF2 plants of the cross VL1043 × CM212 were similar in magnitude.

Funder

Pioneer Hi-Bred Seeds Pvt. Ltd.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference53 articles.

1. Identifying sources of multiple disease resistance in maize;Hooda;Maize J.,2012

2. A preliminary survey of incidence of stalk rot complex of maize in two districts of Karnataka;Desai;Indian Phytopath.,1991

3. Assessment of yield loss due to post-flowering stalk rots in maize;Kumar;J. Appl. Biol.,1998

4. Assessment of yield losses in maize due to charcoal rot in Ghataporabha Left Bank Cannal (GLBC) command area of Karnataka;Harlapur;Karnataka J. Agric. Sci.,2002

5. The incidence of stalk rot (Fusarium spp.) on maize hybrids and its effect on yield of maize in Britain;Cook;Ann. Appl. Biol.,1978

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3