High-Resolution Indicators of Soil Microbial Responses to N Fertilization and Cover Cropping in Corn Monocultures

Author:

Kim NakianORCID,Riggins Chance W.,Zabaloy María C.ORCID,Allegrini Marco,Rodriguez-Zas Sandra L.,Villamil María B.ORCID

Abstract

Cover cropping (CC) is the most promising in-field practice to improve soil health and mitigate N losses from fertilizer use. Although the soil microbiota play essential roles in soil health, their response to CC has not been well characterized by bioindicators of high taxonomic resolution within typical agricultural systems. Our objective was to fill this knowledge gap with genus-level indicators for corn [Zea mays L.] monocultures with three N fertilizer rates (N0, N202, N269; kg N ha−1), after introducing a CC mixture of cereal rye [Secale cereale L.] and hairy vetch [Vicia villosa Roth.], using winter fallows (BF) as controls. A 3 × 2 split-plot arrangement of N rates and CC treatments was studied in a randomized complete block design with three replicates over two years. Bacterial and archaeal 16S rRNA and fungal ITS regions were sequenced with Illumina MiSeq system. Overall, our high-resolution bioindicators were able to represent specific functional or ecological shifts within the microbial community. The abundances of indicators representing acidophiles, nitrifiers, and denitrifiers increased with N fertilization, while those of heterotrophic nitrifiers, nitrite oxidizers, and complete denitrifiers increased with N0. Introducing CC decreased soil nitrate levels by up to 50% across N rates, and CC biomass increased by 73% with N fertilization. CC promoted indicators of diverse functions and niches, including N-fixers, nitrite reducers, and mycorrhizae, while only two N-cycling genera were associated with BF. Thus, CC can enhance the soil biodiversity of simplified cropping systems and reduce nitrate leaching, but might increase the risk of nitrous oxide emission without proper nutrient management. This primary information is the first of its kind in this system and provided valuable insights into the limits and potential of CC as a strategy to improve soil health.

Funder

National Institute of Food and Agriculture

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3