Supplementary Far-Red Light Did Not Affect Tomato Plant Growth or Yield under Mediterranean Greenhouse Conditions

Author:

Palmitessa Onofrio DavideORCID,Leoni Beniamino,Montesano Francesco FabianoORCID,Serio FrancescoORCID,Signore AngeloORCID,Santamaria PietroORCID

Abstract

In the Mediterranean region, tomato plants are often cultivated in two short cycles per year to avoid the heat of summer and the low solar radiation of winter. Supplementary light (SL) makes it possible to cultivate during the dark season. In this experiment, a tomato F1 hybrid cultivar DRW7723 was cultivated in a greenhouse for a fall-winter cycle. After transplant, light emitting diode (LED) interlighting, with two light spectra (red + blue vs. red + blue + far-red) was applied as SL. Plant growth, yield, gas exchange, nutrient solution (NS) consumption, and fruit quality were analyzed. In general, the effects of adding far-red radiation were not visible on the parameters analyzed, although the yield was 27% higher in plants grown with SL than those grown without. Tomatoes had the same average fresh weight between SL treatments, but the plants grown with SL produced 16% more fruits than control. Fruit quality, gas exchange and NS uptake were not influenced by the addition of far-red light. Interlighting is, therefore, a valid technique to increase fruit production in winter but at our latitude the effects of adding far-red radiation are mitigated by available sunlight.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3