A Method of Invasive Alien Plant Identification Based on Hyperspectral Images

Author:

Qiao XiORCID,Liu Xianghuan,Wang Fukuan,Sun Zhongyu,Yang Long,Pu Xuejiao,Huang Yiqi,Liu Shuangyin,Qian Wanqiang

Abstract

Invasive alien plants (IAPs) are considered to be one of the greatest threats to global biodiversity and ecosystems. Timely and accurate detection technology is needed to identify these invasive plants, helping to mitigate the damage to farmland, fruit trees and woodland. Hyperspectral technology has the potential to identify similar species. However, the challenge remains to simultaneously identify multiple invasive alien plants with similar colors based on image data. The spectral images were collected by a hyperspectral camera with a spectral range of 450–998 nm, and the raw spectra were extracted by Cubert software. First derivative (FD), Savitzky-Golay (SG) smoothing and standard normal variate (SNV) were used to preprocess the raw spectral data, respectively. Then, on the basis of preprocessing, principal component analysis (PCA) and ant colony optimization (ACO) were used for feature dimensionality reduction, and the reduced features were used as input variables for later modeling. Finally, a combination of both dimensionality reduction and non-dimensionality reduction is used for identification using support vector machines (SVM) and random forests (RF). In order to determine the optimal recognition model, a total of 18 combinations of different preprocessing methods, dimensionality reduction methods and classifiers were tested. The results showed that a combination of SG smoothing and SVM achieved a total accuracy (A) of 89.36%, an average accuracy (AA) of 89.39% and an average precision (AP) of 89.54% with a test time of 0.2639 s. In contrast, the combination of SG smoothing, the ACO, and SVM resulted in weaker performance in terms of A (86.76%), AA (86.99%) and AP (87.22%), but with less test time (0.0567 s). The SG-SVM and SG-ACO-SVM models should be selected considering accuracy and time cost, respectively, for recognition of the seven IAPs and background in the wild.

Funder

National Natural Science Foundation of China , the Key Research and Development Program of Nanning and the Guangdong Science and Technology Planning Project

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3