The Effects of Alkaline Pretreatment on Agricultural Biomasses (Corn Cob and Sweet Sorghum Bagasse) and Their Hydrolysis by a Termite-Derived Enzyme Cocktail

Author:

Mafa Mpho. S.,Malgas Samkelo,Bhattacharya Abhishek,Rashamuse Konanani,Pletschke Brett I.ORCID

Abstract

Sweet sorghum bagasse (SSB) and corncob (CC) have been identified as promising feedstocks for the production of second-generation biofuels and other value-added chemicals. In this study, lime (Ca(OH)2) and NaOH pretreatment efficacy for decreasing recalcitrance from SSB and CC was investigated, and subsequently, the pretreated biomass was subjected to the hydrolytic action of an in-house formulated holocellulolytic enzyme cocktail (HEC-H). Compositional analysis revealed that SSB contained 29.34% lignin, 17.75% cellulose and 16.28% hemicellulose, while CC consisted of 22.51% lignin, 23.58% cellulose and 33.34% hemicellulose. Alkaline pretreatment was more effective in pretreating CC biomass compared to the SSB biomass. Both Ca(OH)2 and NaOH pretreatment removed lignin from the CC biomass, while only NaOH removed lignin from the SSB biomass. Biomass compositional analysis revealed that these agricultural feedstocks differed in their chemical composition because the CC biomass contained mainly hemicellulose (33–35%), while SSB biomass consisted mainly of cellulose (17–24%). The alkaline pretreated SSB and CC samples were subjected to the hydrolytic action of the holocellulolytic enzyme cocktail, formulated with termite derived multifunctional enzymes (referred to as MFE-5E, MFE-5H and MFE-45) and exoglucanase (Exg-D). The HEC-H hydrolysed NaOH pretreated SSB and CC more effectively than Ca(OH)2 pretreated feedstocks, revealing that NaOH was a more effective pretreatment. In conclusion, the HEC-H cocktail efficiently hydrolysed alkaline pretreated agricultural feedstocks, particularly those which are hemicellulose- and amorphous cellulose-rich, such as CC, making it attractive for use in the bioconversion process in the biorefinery industry.

Funder

Rhodes University

Department of Science and Technology, Republic of South Africa

National Research Foundation

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3