Three Bayesian Tracer Models: Which Is Better for Determining Sources of Root Water Uptake Based on Stable Isotopes under Various Soil Water Conditions?

Author:

Liu Junming12,Si Zhuanyun1,Li Shuang3,Abubakar Sunusi Amin12ORCID,Zhang Yingying1,Wu Lifeng4,Gao Yang1ORCID,Duan Aiwang1

Affiliation:

1. Institute of Farmland Irrigation of Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China

2. Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China

3. Shandong Academy of Agricultural Machinery Science, Jinan 250100, China

4. Binzhou Academy of Agricultural Sciences, Binzhou 256600, China

Abstract

Stable hydrogen and oxygen isotopes provide a powerful technique for quantifying the proportion of root water uptake (RWU) from different potential water sources. Although many models coupled with stable isotopes have been developed to estimate plant water source apportionment, inter-comparisons of different methods are still limited, especially their performance under different soil water content (SWC) conditions. In this study, three Bayesian tracer mixing models, which included MixSIAR, MixSIR and SIAR, were tested to evaluate their performances in determining the RWU of winter wheat under various SWC conditions (normal, dry and wet) in the North China Plain (NCP). The proportions of RWU in different soil layers showed significant differences (p < 0.05) among the three Bayesian models, for example, the proportion of 0–20 cm soil layer calculated by MixSIR, MixSIAR and SIAR was 69.7%, 50.1% and 48.3% for the third sampling under the dry condition (p < 0.05), respectively. Furthermore, the average proportion of the 0–20 cm layer under the dry condition was lower than that under normal and wet conditions, being 45.7%, 58.3% and 59.5%, respectively. No significant difference (p > 0.05) was found in the main RWU depth (i.e., 0–20 cm) among the three models, except for individual sampling periods. The performance of three models in determining plant water source allocation varied with SWC conditions: the performance indicators such as coefficient of determination (R2) and Nash-Sutcliffe efficiency coefficient (NS) in MixSIAR were higher than that in MixSIR and SIAR, showing that MixSIAR performed well under normal and wet conditions. The rank of performance under the dry condition was MixSIR, MixSIAR, and then SIAR. Overall, MixSIAR performed relatively better than other models in predicting RWU under the three different soil moisture conditions.

Funder

China Agriculture Research System of MOF and MARA

National Natural Science Foundation of China

Agricultural Science and Technology Innovation Program (ASTIP), Chinese Academy of Agricultural Sciences

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3