Effects of Ionized Water Addition on Soil Nitrification Activity and Nitrifier Community Structure

Author:

Qu Zhi,Li Mingjiang,Wang Quanjiu,Sun Yan,Wang Yichen,Li Jian

Abstract

Water ionization is an efficient physical water treatment technology, and crop water and nutrient use efficiencies can be improved using ionized water for irrigation. In order to explore the effect of ionized water on soil nitrification and nitrifying microorganisms, we conducted a laboratory soil incubation experiment with the addition of ionized water and ordinary water under different soil water contents (equal to 30%, 60%, 100% and 175% of the field capacity, θFC). During the soil incubation, we analyzed soil inorganic nitrogen transformation, ammonia oxidation gene abundances and nitrifying microbial community structure. The results showed that, no matter adding ordinary water or ionized water, the soil nitrification rate and the abundance of ammonia oxidizing bacteria in the 100%θFC treatment were significantly higher than those in other water conditions, while the abundance of ammonia oxidizing archaea was not affected by the soil water content. With the same soil water content, the nitrification rate of ionized water treatment was stronger than that of the ordinary water treatment. Although the absolute abundance of ammonia-oxidizing microorganisms in ionized water treatment was significantly lower than that of ordinary water (p < 0.05), the relative abundance of some dominant nitrifying microbial genera in the ionized water treatment was significantly higher (p < 0.05). The dominant genera may play a key role in the nitrification process. The results show that ionized water irrigation can significantly promote the nitrification of silt loam soil, especially under 100%θFC conditions, and may regulate soil nitrification by affecting some dominant nitrifying microorganisms. This study provides a theoretical basis for understanding the biological regulation mechanism of ionized water irrigation on soil nutrient transformation and for application of ionized water to field irrigation.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference45 articles.

1. Oat-based crop-ping system for sustainable agricultural development in arid regions of northern China;Islam;Agric. Biotechnol. Ecol.,2010

2. Effects of rainwater harvesting planting combined with deficiency irrigation on soil water use efficiency and winter wheat (Triticum aestivum L.) yield in a semiarid area

3. Managing nitrogen for sustainable development

4. Improving water use efficiency and grain yield of winter wheat by optimizing irrigations in the North China Plain

5. Effect of salinity of de-electronic brackish water on characteristics of water and salt movement in soil;Wang;Trans. Chin. Soc. Agric. Eng.,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3