Isolation and Activity Analysis of Phytoene Synthase (ClPsy1) Gene Promoter of Canary-Yellow and Golden Flesh-Color Watermelon

Author:

Cao Yue12,Fang Xufeng12ORCID,Liu Shi12ORCID,Luan Feishi12

Affiliation:

1. Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China

2. College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China

Abstract

Watermelon (Citrullus lanatus) is an economically important cucurbit crop. Its pulp is rich in antioxidant carotenoids, which confer a variety of flesh colors. ClPsy1 (Phytoene Synthase) is the rate-limiting enzyme for carotenoid synthesis; however, the promoter activity of ClPsy1 is still unknown. In the present study, promoter sequences were isolated from four watermelon accessions: Cream of Saskatchewan pale yellow (COS), canary yellow flesh (PI 635597), golden flesh (PI 192938), and red flesh (LSW-177), all of which express ClPsy1 at extremely high levels. Sequence alignment and cis-element analysis disclosed six SNPs between the four lines all in COS, two of which (at the 598th and 1257th positions) caused MYC and MYB cis-element binding sequence variations, respectively. To confirm ClPsy1 gene promoter activity, full-length and deletion fragments of the promoter were constructed and connected to a β-D-glucosidase (GUS) vector and transferred into tomato fruits. GUS staining was performed to analyze the key segment of the promoter. The activity of the PI 192938 ClPsy1 full-length promoter exceeded that of COS. The deletion fragment from −1521 bp to −1043 bp exhibited strong promoter activity, and contained a MYB transcription factor-binding site mutation. We combined RNA-seq with qRT-PCR to analyze the gene expression pattern between the MYB transcription factor Cla97C10G196920 and ClPsy1 gene and found that Cla97C10G196920 (ClMYB21) showed the same expression trend with ClPsy1, which positively regulates carotenoid synthesis and metabolism.

Funder

National Natural Science Foundation of China

Heilongjiang Province National Science Fund for Distinguished Young Scholars

China Agriculture Research System of MOF and MARA

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3