Effects of Long-Term Straw Return and Environmental Factors on the Spatiotemporal Variability of Soil Organic Matter in the Black Soil Region: A Case Study

Author:

Yan Yang,Ji WenjunORCID,Li Baoguo,Wang Guiman,Hu BifengORCID,Zhang Chao,Mouazen Abdul MounemORCID

Abstract

Exploring the effects of straw return and environmental factors on the spatiotemporal variation of soil organic matter (SOM) in black soil regions is essential for soil carbon sequestration research. However, studies seldom quantified the effects of long-term straw return on a long-term SOM variation at a regional scale in typical black soil areas. The case was conducted in one of the three major black soil regions in the Northern Hemisphere, where the straw return policy has been implemented for a long time. The study obtained the SOM spatial distribution in 2007, 2009, 2012, 2015, and 2018 with approximately 9000 samples and analyzed the effects of soil types, texture, elevation, and human management on the spatiotemporal variation. The results indicated that from the 1980s to 2007, before the straw return policy implementation, the mean SOM content decreased from 24.38 g kg−1 to 18.94 g kg−1. In contrast, the mean SOM content gradually increased from 2007 to 2018 after implementing straw return practices. In addition, the area of SOM within 20–30 g kg−1 increased gradually, with 32.2%, 40.5%, 50.2%, 49.4%, and 60.5% in 2007, 2009, 2012, 2015, and 2018, respectively. Surprisingly, the SOM within 30–40 g kg−1 emerged in 2018. The results indicated that returning straw to the field might promote SOM accumulation. However, the SOM contents in Phaezems (19.25–21.82 g kg−1) were lower than that in natural Phaezems (40–60 g kg−1), indicating severe degradation. The clay content positively correlated to SOM and was a major explanatory variable for the response of SOM to straw return. Straw return practices are promising measures in the black soil region and are worth exploring more effective approaches to allow straw return to play a better role.

Funder

Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, P.R. China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3