Isolate-Dependent Inheritance of Resistance Against Pseudoperonospora cubensis in Cucumber

Author:

Chen TomerORCID,Katz Daniel,Ben Naim Yariv,Hammer Rivka,Ben Daniel Bat Hen,Rubin Avia E.,Cohen YigalORCID

Abstract

Six wild accessions of Cucumis sativum were evaluated for resistance against each of the 23 isolates of the downy mildew oomycete Pseudoperonospora cubensis. The isolates originated from Israel, Europe, USA, and Asia. C. sativum PI 197088 (India) and PI 330628 (Pakistan) exhibited the highest level of resistance against multiple isolates of P. cubensis. Resistance was manifested as reduced lesion number, lesion size, sporangiophores and sporangia per lesion and enhanced encasement of haustoria with callose and intensive accumulation of lignin in lesions of both Plant Introductions (PIs) compared to the susceptible C. sativum SMR-18. In the field, much smaller AUDPC (Area Under Disease Progress Curve) values were recorded in PI 197088 or PI 330628 as compared to SMR-18. Each PI was crossed with SMR-18 and offspring progeny plants were exposed to inoculation with each of several isolates of P. cubensis in growth chambers and the field during six growing seasons. F1 plants showed partial resistance. F2 plants showed multiple phenotypes ranging from highly susceptible (S) to highly resistant (R, no symptoms) including moderately resistant (MR) phenotypes. The segregation ratio between phenotypes in growth chambers ranged from 3:1 to 1:15, depending on the isolate used for inoculation, suggesting that the number of genes, dominant, partially dominant, or recessive are responsible for resistance. In the field, the segregation ratio of 1:15, 1:14:1, or 1:9:6 was observed. F2 progeny plants of the cross between the two resistant PI’s were resistant, except for a few plants that were partially susceptible, suggesting that some of the resistance genes in PI 197088 and PI 330328 are not allelic.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3