Introgression of Resistance to Leafminer (Liriomyza cicerina Rondani) from Cicer reticulatum Ladiz. to C. arietinum L. and Relationships between Potential Biochemical Selection Criteria

Author:

Chrigui Nesrine,Sari Duygu,Sari HaticeORCID,Eker TubaORCID,Cengiz Mehmet Fatih,Ikten Cengiz,Toker CengizORCID

Abstract

The chickpea leafminer, Liriomyza cicerina (Rondani), is one of the most destructive insect pests of cultivated chickpea (Cicer arietinum L.) in the Mediterranean region under field conditions. For sustainable and environmentally friendly chickpea production, efforts have been devoted to managing the leafminer via decreasing the use of insecticides. Breeding of new resistant varieties is not only an efficient and practical approach, but also cost-effective and environmentally sensitive. To improve resistant varieties, breeders need reliable biochemical selection criteria that can be used in breeding programs. The first objective was to investigate the possible introgression of resistance to the leafminer from C. reticulatum Ladiz. (resistant) to C. arietinum (susceptible), then, to estimate inheritance of resistance to the leafminer for efficient breeding strategies, and finally, to study organic acid contents as selection criteria. Recombinant inbred lines (RILs) and their parents were evaluated using a visual scale of 1–9 (1 = free from leafminer damage and 9 = mines in more than 91% of the leaflets and defoliation greater than 31%) in the field under natural infestation conditions after the susceptible parent and check had scores of >7 on the visual scale. Superior RILs were found for resistance to the leafminer, and agro-morphological traits indicating that introgression of resistance to leaf miner from C. reticulatum to C. arietinum could be possible using interspecific crosses. The inheritance pattern of resistance to the leafminer in RILs was shown to be quantitative. Organic acids, including oxalic, malic, quinic, tartaric, citric and succinic acids in RILs grown in the field under insect epidemic conditions and in the greenhouse under non-infested conditions were detected by using high performance liquid chromatography (HPLC). In general, organic acids were found to be higher in resistant RILs than susceptible RILs. Path and correlation coefficients showed that succinic acid exhibited the highest direct effects on resistance to the leafminer. Multivariate analyses, including path, correlation and factor analyses suggested that a high level of succinic acid could be used as a potential biochemical selection criterion for resistance to leafminer in chickpea. Resistant RILs with a high seed yield resembling kabuli chickpea can be grown directly in the target environments under leaf miner infestation conditions.

Funder

Akdeniz Üniversitesi

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference79 articles.

1. Host Plant Resistance and Insect Pest Management in Chickpea;Sharma,2007

2. Chickpea Insect Pest and Their Control;Reed,1987

3. Parasitoids of chickpea leafminer Liriomyza cicerina (Diptera: Agromyzidae) and their parasitism rate on chickpea fields in North Tunisia

4. The parasitoid complex ofLiriomyza cicerina on chickpea (Cicer arietinum)

5. Insects pest of chickpea in the Mediterranean area and possibilities for resistance. Cah;Weigand;Options Mediterr.,1990

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3