Heat Pump Drying of Lavender Flowers Leads to Decoctions Richer in Bioactive Compounds

Author:

Falla Nicole Mélanie,Caser MatteoORCID,Demasi SoniaORCID,Scariot ValentinaORCID

Abstract

Lavandula angustifolia Mill. (Lamiaceae family) is commonly exploited in different sectors, such as cosmetics, perfumery, and medicine because of its phytochemicals. More recently it has gained attention as an edible flower in the food and beverage industry. Post-harvest technologies can help producers to increase the functional beverages market, where there is a growing demand for new products rich in bioactive molecules with beneficial health effects. To maintain lavender flower properties, bioactive compounds have to be effectively preserved after harvesting and processing. This study compared an emerging technology, heat pump drying, with a classical drying approach, i.e., hot air drying, focusing on differences in the total phenolic content, the anthocyanin content, the phenolic profile, and in antioxidant activity of the dried lavender flowers. Three different Italian local lavender flower selections (i.e., Susa, Stura, and Tanaro) were analyzed by means of decoction extraction. Results showed that each one was better preserved in its phytochemical composition by heat-pump drying. Among the lavender selections, Stura and Tanaro showed the highest values for phenolics (2200.99 and 2176.35 mg GAE/100 g DW, respectively), anthocyanins (59.30 and 60.74 mg C3G/100 g DW respectively) and antioxidant activity, assessed through three assays (FRAP, DPPH, ABTS). Four bioactive compounds were detected by means of HPLC, three in the heat pump dried flowers’ decoction (quercitrin, ellagic acid, gallic acid), and one in the hot air-dried flowers’ decoction (epicatechin). Overall, heat pump drying allowed to obtain decoctions richer in bioactive compounds.

Funder

Interreg V-A Francia Italia Alcotra

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3