Transcriptomic and Physiological Responses of Qingye Ramie to Drought Stress

Author:

Liu Tongying1,Fu Yafen1,Li Guang1,Wang Xin1,Qu Xiaoxin1,Wang Yanzhou1,Zhu Siyuan1ORCID

Affiliation:

1. Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China

Abstract

Qingye ramie is a multi-purpose crop, used as a feed ingredient in southern China, that is susceptible to drought. Qingye ramie was studied to investigate the effects of high temperatures and drought on its growthh. The results show that, after drought, ramie leaves turn yellow and that the height of the plant, the number of tillers, and its antioxidant activity decreased. To elucidate the molecular mechanism of drought tolerance, we performed RNA sequencing (RNA-seq) on drought-stressed samples and found that 3893 differentially expressed genes showed significant changes; 1497 genes were upregulated, and 2796 genes were downregulated. These genes were categorized into four metabolic pathways and were mainly enriched in plant hormone signal transcription, phenylpropanoid biosynthesis, amino sugar and nucleotide sugar metabolism, and starch and sucrose metabolism. Among these, we mapped the regulatory mechanism of Qingye ramie under drought and adversity. Of these, the expression of MAPK-related genes in the plant hormone pathway was the most significant. The expression of three MAPK serine/threonine protein kinase genes was upregulated by 2.62- to 3.45-fold and the expression of PP2C-related genes increased by 3.34- to 14.12-fold. The expression of PYR/PYL genes decreased significantly by 2.92–7.09-fold. Furthermore, in addition to NAC, ERF, MYB, bHLH, bZIP, C2H2, GeBP, and WRKY transcription factors that have been shown to regulate drought. Some other transcription factors, such as CCL, ASD, SAU, and SPS, were also up- or downregulated in Qingye ramie. Then, the samples were analyzed by qRT-PCR and the variations were consistent with the sequencing results. Consequently, we suggest that the changes after drought stress in green-leaf ramie may be regulated by these transcription factors. Further studies can be carried out in the future, which will provide valuable and important information on the plant’s drought resistance mechanism and deepen our understanding of the mechanisms of drought resistance in Qingye ramie.

Funder

National Natural Science Foundation of China

Hunan Provincial Natural Science Foundation of China

China Agriculture Research System of MOF and MARA

Publisher

MDPI AG

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3