Multiple Stresses of Wheat in the Detection of Traits and Genotypes of High-Performance and Stability for a Complex Interplay of Environment and Genotypes

Author:

Al-Ashkar IbrahimORCID,Sallam Mohammed,Al-Suhaibani Nasser,Ibrahim Abdullah,Alsadon AbdullahORCID,Al-Doss AbdullahORCID

Abstract

The effect of traits and the interaction of genotype × environment (GE) is one of the major challenges in detecting traits and genotypes with outstanding performance and stability through various stresses and years. The objective of this study was to identify the genetic influence traits of wheat, and genotypes with outstanding performance and stability under different environmental stress. The trials were carried out in two consecutive seasons with three treatments (optimal irrigation, limited irrigation, and heat stress), totaling six test environments at two different locations. After observing the importance of GE interaction, and the statistical significance for all studied traits, multivariate analysis was applied using stepwise regression (SR) for detecting influenced traits, and AMMI, AMMI’s stability values (ASV), yield stability index (YSI), superiority and GGE biplot methods to identify the genotype’s phenotypic stability. SR analysis showed that nine out of 22 traits have contributed significantly to grain yield (GY), which varied according to the environment. Equations of the models (GY) regression coefficient values reflected the importance seven of them have on a significant positive correlation on GY. The study confirmed the importance of AMMI and GGE biplots in decoding the GEI based on GY data. AMMI1 biplots showed that the three environments E1, E4, and E6 were the stronger interacting environments than E2, E3, and E5, in which the interaction was weak. YSI, superiority analysis, and superiority multi-trait analysis scores were largely compatible. YSI scores described the six genotypes viz, G5 (DHL26), G12 (DHL29), G10 (DHL01), G18 (Sakha-93), G2 (DHL02) and, G6 (Gemmeiza-9), these were marked by high stability and productivity. The GGE biplot analysis showed genotypes (G15 (Misr1) and G4 (DHL07)) recorded the highest grain yield in E3 and E4, whereas genotype G18 (Sakha-93) was in E6. It also showed G19 (Pavone-76) was the best genotype due to being situated in the center of the concentric circles and due to its high-yield. The methods considered were compatible with the detection of promising wheat genotypes with high mean performance and outstanding phenotypic stability across various stresses and years.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3